1*2*3...*12乘以一个自然数a,乘积是一个整数的平方。求最小自然数a. 急!请快一点,谢谢!!
4个回答
展开全部
1*2*3...*12乘以一个自然数a,乘积是一个整数的平方。求最小自然数a
解:
标准质因子分解式:
1*2*3...*12
=2^(6+3+1)*3^(4+1)*5^(2)*7*11 (注$$$:)
=2^10*3^5*5^2*7*11
=(2^5*3^2*5)^2 * (3*7*11)
显然可以取a=3*7*11.
$$$:
求1*2* ... *N的标准分解式中素数p的指数:
e=e1+e2+...
其中
e1=[N/p] 注:[x]表示数N/p的整数部分。
e2=[e1/p]=[N/p^2]
e3=[e2/p]=[N/p^3]
例如上题中1*2* ... *12的标准分解式中2的指数e可以这样求
e1=12/2=6;e2=6/2=3;e3=[3/2]=1;后面的项全是0.故e=6+3+1
同理,12/3=4,[4/3]=1,后面的项全是0.
进一步过程参见:
http://z.baidu.com/question/179487005.html
解:
标准质因子分解式:
1*2*3...*12
=2^(6+3+1)*3^(4+1)*5^(2)*7*11 (注$$$:)
=2^10*3^5*5^2*7*11
=(2^5*3^2*5)^2 * (3*7*11)
显然可以取a=3*7*11.
$$$:
求1*2* ... *N的标准分解式中素数p的指数:
e=e1+e2+...
其中
e1=[N/p] 注:[x]表示数N/p的整数部分。
e2=[e1/p]=[N/p^2]
e3=[e2/p]=[N/p^3]
例如上题中1*2* ... *12的标准分解式中2的指数e可以这样求
e1=12/2=6;e2=6/2=3;e3=[3/2]=1;后面的项全是0.故e=6+3+1
同理,12/3=4,[4/3]=1,后面的项全是0.
进一步过程参见:
http://z.baidu.com/question/179487005.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询