已知函数fx=log(1/2)(x+1)/(x-1) 判断奇偶性。证明fx在(1,+∞)是增函数

花生窝窝头
2010-08-25 · TA获得超过805个赞
知道小有建树答主
回答量:323
采纳率:100%
帮助的人:194万
展开全部
哎 ,基本题啊
(1)f(x)=log(x+1)/(x-1)底数1/2我不写了
那么f(-x)=log[(-x)+1]/[(-x)-1]
=log(1-x)/(-1-x)
=log(x-1)/(1+x)
=-log(x+1)/(x-1)
=-f(x)
因此该函数为奇函数
(2)证明为增函数,由于底数为1/2,如昌敬只需证明g(x)=(x+1)/(x-1)在此区间递减
g(x0=(x+1)/(x-1)=(x-1+2)/(x-1)=1 + 2/(x-1)
很显然,在(渣慎1,+∞迅老)里,当x↑时,2/(x-1)↓,g(x)↓,f(x)↑
图人疼
2010-09-02
知道答主
回答量:17
采纳率:0%
帮助的人:13.7万
展开全部
f(x)=log(1/2)(x+1)(x-1)可写成f(x)=log(1/2)+log(x+1)+log(x-1)
当x=-x时
f(-x)=log(1/2)+log(-x+1)+log(-x-1)
=log(1/2)+log-(x-1)+log-(x+1)
=log(1/2)+log[-(x-1)][-(x+1)]
=log(1/2)+log(x-1)(x+1)
=log(1/2)(x+1)(x-1)
=f(x)
所以f(x)=f(-x)
所以是偶函数
设x属于(1,手隐燃+∞)
f(x+1)-f(x)=log(1/2)(x+1+1)(x+1-1)-log(1/2)(x+1)(x-1)
=log[(1/2)(x+2)x/(1/2)(x+1)(x-1)]
=log(x*x+2x/x*x-1)
=log[(x*x-1+2x+1)/(x*x-1)]
=log[1+(2x+1)/(x*x-1)]
因为(2x+1)(x*x-1)>0
所以1+(2x+1)/(x*x-1)>1
所以f(x+1)-f(x)>0
及f(x+1)>f(x)
由此可得 f(x)在(1,+∞)是增函数。

楼主啊,不毕虚知道我解携知得对吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式