怎样 求证1-2sinxcosx/cos^2=1-tanx/1+tanx
1个回答
展开全部
左边分子 1-2sinxcosx= sinx^2+cosx^2-2sinxcosx= (cosx-sinx)^2
分母 cos2x=cosx^2-sinx^2=(cosx-sinx)(sinx+cosx)
上下约去 (cosx-sinx)后变为 (cosx-sinx)/(cosx+sinx)
1-2sinxcosx/cos^2x
=(cosx-sinx)/(cosx+sinx)
{分子分母同时除以cosx}
=(1-tanx)/(1+tanx)
分母 cos2x=cosx^2-sinx^2=(cosx-sinx)(sinx+cosx)
上下约去 (cosx-sinx)后变为 (cosx-sinx)/(cosx+sinx)
1-2sinxcosx/cos^2x
=(cosx-sinx)/(cosx+sinx)
{分子分母同时除以cosx}
=(1-tanx)/(1+tanx)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询