高中数学题,求详解!
1.二面角α-l-β为60°,A,B是棱上的两点,AC,BD分别在半平面α,β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为多少?2.两家人共同拥有一...
1.二面角α-l-β为60°,A,B是棱上的两点,AC,BD分别在半平面α,β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为多少?
2.两家人共同拥有一块土地ABC,形状是等腰直角三角形,∠C=90°,AC=a米,如果两家人,准备划分一条分割线PQ(直线段),使两家所得土地面积相等,其中P,Q分别在线段AB,AC上。
(Ⅰ)如果准备在分割线上建造一堵墙,请问如何划分分割线,才能使造墙费用最少;
(Ⅱ)如果准备在分割线上栽种同一种果树,如何划分割线,才能使果树的产量最大?
要详解啊!拜托了! 展开
2.两家人共同拥有一块土地ABC,形状是等腰直角三角形,∠C=90°,AC=a米,如果两家人,准备划分一条分割线PQ(直线段),使两家所得土地面积相等,其中P,Q分别在线段AB,AC上。
(Ⅰ)如果准备在分割线上建造一堵墙,请问如何划分分割线,才能使造墙费用最少;
(Ⅱ)如果准备在分割线上栽种同一种果树,如何划分割线,才能使果树的产量最大?
要详解啊!拜托了! 展开
2个回答
展开全部
1
解:
在α,β平面内分别做一点G,F,使得CG‖直线l,且GB⊥l;使得DF‖直线l,且FA⊥l
∵CA⊥l,GB⊥l,CG‖直线l,CA,GB∈α
∴CG=AB=a
同理可得DF=AB=a,既CG=DF=AB=a
∵GB⊥l,CA⊥l,且CG在同一直线上
∴AC=BG=a
又∵CG‖直线l,DF‖直线l,CG=DF=AB=a
∴CG‖DF且CG=DF=a
∵CG‖直线l,BD⊥l
∴CG⊥BD
同理可得DF⊥BG
∵CG⊥BG,CG⊥BD,DF⊥BD,DF⊥BG
∴CG⊥平BGD,DF⊥平BGD
且CG‖DF‖l ,CG=DF=a
则CGDF为矩形
在△BGD中,应用余弦定理可得DG
DG^2=BG^2+BD^2-2BG*BD*cos∠GBD
BG=a,BD=2a,cos∠GBD=cos600=1/2
DG^2=a^2+4a^2-2*a*2a*1/2
DG^2=3a^2
CD^2=CG^2+GD^2
=a^2+3a^2
=4a^2
长为正数
CD=2a
2题
建立直角坐标系,以C点为原点CA方向为X正方向,CB方向为Y正方向。设P点坐标为P(x1,0),Q点坐标为 Q(x2,a-x2)
根据三角形面积公式
S△=1/2 * | a b 1 |
| c d 1 |
| e f 1 |
| a b 1 |
| c d 1 |
| e f 1 |为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC顺序可按逆时针方向从顶点选取。计算值为负,取绝对值。
S△=1/2 * | a b 1 |
| c d 1 |
| e f 1 |
=1/2 *(a^2-a*x2-a*x1+x1*x2)
=1/2 *(a-x1)*(a-x2) (1)
PQ^2=(x1-x2)^2+(a-x2)^2
根据题目要求S△=(1/2)S△ABC
=(1/2)* (1/2)*a*a
=0.25*a^2
(1) 题目要求PQ最小,则PQ^2也最小
分析PQ^2表达式可设x1-x2=0(x1,x2均取不到a)
将此带入(1)式计算
1/2 *(a-x1)*(a-x2)= 0.25*a^2
(a-x1)*(a-x1)= 0.5*a^2 解得x1=x2=a(2-√2)/2
分割线P点距C点a(2-√2)/2,此时距离最短,最短距离为a√2/2。QP⊥CA,Q点距A点距离为a。
(2)题目要求PQ最大,则PQ^2也最大
(a-x1)*(a-x1)= 0.5*a^2
a-x2↑,a-x1↓,x1↑,x2↓。|x1-x2|↑
a-x2可取的最大值为a。可计算出x1=a/2,x2=0
分割线P点距C点a/2,Q点距A点距离为√2a(既Q点与B点重合),此时距离最长,最长距离为a√5/2
解:
在α,β平面内分别做一点G,F,使得CG‖直线l,且GB⊥l;使得DF‖直线l,且FA⊥l
∵CA⊥l,GB⊥l,CG‖直线l,CA,GB∈α
∴CG=AB=a
同理可得DF=AB=a,既CG=DF=AB=a
∵GB⊥l,CA⊥l,且CG在同一直线上
∴AC=BG=a
又∵CG‖直线l,DF‖直线l,CG=DF=AB=a
∴CG‖DF且CG=DF=a
∵CG‖直线l,BD⊥l
∴CG⊥BD
同理可得DF⊥BG
∵CG⊥BG,CG⊥BD,DF⊥BD,DF⊥BG
∴CG⊥平BGD,DF⊥平BGD
且CG‖DF‖l ,CG=DF=a
则CGDF为矩形
在△BGD中,应用余弦定理可得DG
DG^2=BG^2+BD^2-2BG*BD*cos∠GBD
BG=a,BD=2a,cos∠GBD=cos600=1/2
DG^2=a^2+4a^2-2*a*2a*1/2
DG^2=3a^2
CD^2=CG^2+GD^2
=a^2+3a^2
=4a^2
长为正数
CD=2a
2题
建立直角坐标系,以C点为原点CA方向为X正方向,CB方向为Y正方向。设P点坐标为P(x1,0),Q点坐标为 Q(x2,a-x2)
根据三角形面积公式
S△=1/2 * | a b 1 |
| c d 1 |
| e f 1 |
| a b 1 |
| c d 1 |
| e f 1 |为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC顺序可按逆时针方向从顶点选取。计算值为负,取绝对值。
S△=1/2 * | a b 1 |
| c d 1 |
| e f 1 |
=1/2 *(a^2-a*x2-a*x1+x1*x2)
=1/2 *(a-x1)*(a-x2) (1)
PQ^2=(x1-x2)^2+(a-x2)^2
根据题目要求S△=(1/2)S△ABC
=(1/2)* (1/2)*a*a
=0.25*a^2
(1) 题目要求PQ最小,则PQ^2也最小
分析PQ^2表达式可设x1-x2=0(x1,x2均取不到a)
将此带入(1)式计算
1/2 *(a-x1)*(a-x2)= 0.25*a^2
(a-x1)*(a-x1)= 0.5*a^2 解得x1=x2=a(2-√2)/2
分割线P点距C点a(2-√2)/2,此时距离最短,最短距离为a√2/2。QP⊥CA,Q点距A点距离为a。
(2)题目要求PQ最大,则PQ^2也最大
(a-x1)*(a-x1)= 0.5*a^2
a-x2↑,a-x1↓,x1↑,x2↓。|x1-x2|↑
a-x2可取的最大值为a。可计算出x1=a/2,x2=0
分割线P点距C点a/2,Q点距A点距离为√2a(既Q点与B点重合),此时距离最长,最长距离为a√5/2
展开全部
1.由题意知二面角α-l-β为60°,A,B是棱上的两点,AC,BD分别在半平面α,β内,AC⊥AB,BD⊥AB,AB=AC=a,BD=2a
过D作DE⊥面α交面α于E,连接CE,BE
由三垂线定理可知DE⊥CE,DE⊥BE,DE⊥AB
ABEC为正方形,CE=BE=a
在Rt⊿BDE中,BD=2a,BE=a, ∠DBE=60°,∴DE=√3a
在Rt⊿DCE中,CE=a,DE=√3a,∴DC=2a
2.(1) 使造墙费用最少,即使分割线PQ最短
∵两家所得土地面积相等
∴分割线PQ最短时,Q与C重合,P在AB中点PQ=√2/2a;
(2) 使果树的产量最大,即使分割线PQ最长
∵两家所得土地面积相等
∴分割线PQ最长时,P与B重合,
设AB边上高为h,S(QAB)=1/2ABh=a^2/4==>h=√2/4a
AQ=1/2a,即Q在AC中点PQ=√5/2a;
过D作DE⊥面α交面α于E,连接CE,BE
由三垂线定理可知DE⊥CE,DE⊥BE,DE⊥AB
ABEC为正方形,CE=BE=a
在Rt⊿BDE中,BD=2a,BE=a, ∠DBE=60°,∴DE=√3a
在Rt⊿DCE中,CE=a,DE=√3a,∴DC=2a
2.(1) 使造墙费用最少,即使分割线PQ最短
∵两家所得土地面积相等
∴分割线PQ最短时,Q与C重合,P在AB中点PQ=√2/2a;
(2) 使果树的产量最大,即使分割线PQ最长
∵两家所得土地面积相等
∴分割线PQ最长时,P与B重合,
设AB边上高为h,S(QAB)=1/2ABh=a^2/4==>h=√2/4a
AQ=1/2a,即Q在AC中点PQ=√5/2a;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询