设函数f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围

设函数f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围... 设函数f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围 展开
hbc3193034
2010-08-25 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,
∴x^2/m^2-1-16(x^2-1)<=(x-1)^2-1+4(m^2-1),
化简,x^2*(1/m^2-16)+15<=x^2-2x+4m^2-4,
x^2*(1/m^2-17)+2x+19-4m^2<=0,
以下分两种情况:
i)1/m^2-17<0,
且△/4=1-(1/m^2-17)(19-4m^2)
=1-(19/m^2-327+68m^2)
=-(68m^2-328+19/m^2)<=0.
化为m^2>1/17,
且68m^4-328m^2+19>=0。很繁!
ii)1/m^2-17<0,
68m^4-328m^2+19<0,
-1/(1/m^2-17)<=2/3,
4/9*(1/m^2-17)+4/3+19-4m^2<=0.更繁!
kittylovesuk
2012-07-16
知道答主
回答量:18
采纳率:0%
帮助的人:10.5万
展开全部
解:依据题意得x2m2-1-4m2(x2-1)≤(x-1)2-1+4(m2-1)在x∈[
32,+∞)上恒定成立,
即1m2-4m2≤-
3x2-
2x+1在x∈[
32,+∞)上恒成立.
当x=
32时,函数y=-
3x2-
2x+1取得最小值-
53,所以1m2-4m2≤-
53,即(3m2+1)(4m2-3)≥0,
解得m≤-
32或m≥
32,
故答案为:(-∞,-32]∪[32,+∞). 有些符号掉了!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式