设函数f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围
设函数f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围...
设函数f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围
展开
2个回答
展开全部
f(x)=x²-1,对任意x∈[2/3,+∞),f(x/m)-4²f(x)≤f(x-1)+4f(m)恒成立,
∴x^2/m^2-1-16(x^2-1)<=(x-1)^2-1+4(m^2-1),
化简,x^2*(1/m^2-16)+15<=x^2-2x+4m^2-4,
x^2*(1/m^2-17)+2x+19-4m^2<=0,
以下分两种情况:
i)1/m^2-17<0,
且△/4=1-(1/m^2-17)(19-4m^2)
=1-(19/m^2-327+68m^2)
=-(68m^2-328+19/m^2)<=0.
化为m^2>1/17,
且68m^4-328m^2+19>=0。很繁!
ii)1/m^2-17<0,
68m^4-328m^2+19<0,
-1/(1/m^2-17)<=2/3,
4/9*(1/m^2-17)+4/3+19-4m^2<=0.更繁!
∴x^2/m^2-1-16(x^2-1)<=(x-1)^2-1+4(m^2-1),
化简,x^2*(1/m^2-16)+15<=x^2-2x+4m^2-4,
x^2*(1/m^2-17)+2x+19-4m^2<=0,
以下分两种情况:
i)1/m^2-17<0,
且△/4=1-(1/m^2-17)(19-4m^2)
=1-(19/m^2-327+68m^2)
=-(68m^2-328+19/m^2)<=0.
化为m^2>1/17,
且68m^4-328m^2+19>=0。很繁!
ii)1/m^2-17<0,
68m^4-328m^2+19<0,
-1/(1/m^2-17)<=2/3,
4/9*(1/m^2-17)+4/3+19-4m^2<=0.更繁!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询