高一数学,关于向量。
已知向量m=(cosa,sina),n=(√3,-1),|2m-n|的最大值和最小值答案是(0,4根号2)...
已知向量m=(cosa,sina),n=(√3,-1),|2m-n|的最大值和最小值
答案是(0,4根号2) 展开
答案是(0,4根号2) 展开
4个回答
展开全部
|2m-n|²=4m²+n²-4m·n=4+4-4*1*2*cosx=8-8cosx
其中x表示m,n的夹角
所以cosx=1时,|2m-n|=0最小。cosx=-1时,|2m-n|=4最大
注意:答案错了。
其中x表示m,n的夹角
所以cosx=1时,|2m-n|=0最小。cosx=-1时,|2m-n|=4最大
注意:答案错了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n是(√3,-1)?
以这个计算的。
|2m-n|=√[(2cosa-√3)²+(2sina+1)²]
(2cosa-√3)²+(2sina+1)²=4cos²a-4√3cosa+3+4sin²a+4sina+1
=4sina-4√3cosa+8
=8sin(a-π/3)+8 最大值8+8=16,最小值-8+8=0
所以|2m-n|最小值0,最大值4
以这个计算的。
|2m-n|=√[(2cosa-√3)²+(2sina+1)²]
(2cosa-√3)²+(2sina+1)²=4cos²a-4√3cosa+3+4sin²a+4sina+1
=4sina-4√3cosa+8
=8sin(a-π/3)+8 最大值8+8=16,最小值-8+8=0
所以|2m-n|最小值0,最大值4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
直接代入,化简,得
|2m-n|=2倍的根号下(sina+2-根号3)
而-1<=sina<=1
所以,最大值为sina=1时候的值,最小值为sina=-1时候的值
而实际上,sina=-1时,原式无意义——二次根下数值小于0
所以,最小值应该为0
|2m-n|=2倍的根号下(sina+2-根号3)
而-1<=sina<=1
所以,最大值为sina=1时候的值,最小值为sina=-1时候的值
而实际上,sina=-1时,原式无意义——二次根下数值小于0
所以,最小值应该为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询