一道数学归纳法证明题
展开全部
dwtydwtyky的做法悲剧了~
“两式相减”的时候,那是不等式啊怎么能小的减小的,大的减大的呢??
我有一种做法,需要写一会儿……
n=1显然
n=k时1+k/2<=1+1/2+1/3+...+1/(2^k)<=1/2+k (1)
n=k+1时
要证
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+……+1/(2^(k+1))<=1/2+k+1 (2)
先证左半个不等式:
(1)的左半个同时加1/2:
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+1/2
与待证的(2)左半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))>=1/2 (3)
证明(3):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最小者为1/(2^(k+1))
故1/(2^k+1)+……+1/(2^(k+1))>=2^k/(2^(k+1))=1/2,(3)得证。
再证右半个不等式:
(1)的右半个同时加1:
1+1/2+1/3+...+1/(2^k)+1<=1/2+k+1
与待证的(2)右半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))<=1 (4)
证明(4):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最大者为1/(2^k+1)
故1/(2^k+1)+……+1/(2^(k+1))<=2^k/(2^k+1)=1-1/(2^k+1)<=1,(4)得证。
“两式相减”的时候,那是不等式啊怎么能小的减小的,大的减大的呢??
我有一种做法,需要写一会儿……
n=1显然
n=k时1+k/2<=1+1/2+1/3+...+1/(2^k)<=1/2+k (1)
n=k+1时
要证
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+……+1/(2^(k+1))<=1/2+k+1 (2)
先证左半个不等式:
(1)的左半个同时加1/2:
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+1/2
与待证的(2)左半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))>=1/2 (3)
证明(3):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最小者为1/(2^(k+1))
故1/(2^k+1)+……+1/(2^(k+1))>=2^k/(2^(k+1))=1/2,(3)得证。
再证右半个不等式:
(1)的右半个同时加1:
1+1/2+1/3+...+1/(2^k)+1<=1/2+k+1
与待证的(2)右半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))<=1 (4)
证明(4):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最大者为1/(2^k+1)
故1/(2^k+1)+……+1/(2^(k+1))<=2^k/(2^k+1)=1-1/(2^k+1)<=1,(4)得证。
展开全部
n=1时
假设n=k时成立
1+k/2<=1+1/2+1/3+...+1/(2^k)<=1/2+k
n=k+1时
要证
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+………1/(2^(k+1))<=1/2+k+1
两式相减,
须证1/2<=1/(2^k+1)+1/(2^k+2)+……+1/(2^(k+1))<=1
中间共有2^k项,最大是1/(2^k+1),最小是1/(2^(k+1))
所以2^k/(2^(k+1))<^^^^^^^^<2^k/(2^k+1)
所以1/2<^^^^^^^^<1
假设n=k时成立
1+k/2<=1+1/2+1/3+...+1/(2^k)<=1/2+k
n=k+1时
要证
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+………1/(2^(k+1))<=1/2+k+1
两式相减,
须证1/2<=1/(2^k+1)+1/(2^k+2)+……+1/(2^(k+1))<=1
中间共有2^k项,最大是1/(2^k+1),最小是1/(2^(k+1))
所以2^k/(2^(k+1))<^^^^^^^^<2^k/(2^k+1)
所以1/2<^^^^^^^^<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
(1)首先证明1+n/2<=1+1/2+1/3+...+1/(2^n)
令f(n)=(1+1/2+1/3+...+1/(2^n))-(1+n/2)
=1/2+1/3+...+1/2^n-n/2
当n=1时,f(n)=0
当n>1时,假设f(n)>=0
则有f(n+1)=1/2+1/3+...+1/2^(n+1)-(n+1)/2
=f(n)+1/(2^n+1)+...+1/2^(n+1)-1/2
>=f(n)+(2^(n+1)-2^n)/(2^(n+1))-1/2
=f(n)+1
>0
由此可知,对于任意n>0总有1+n/2<=1+1/2+1/3+...+1/(2^n)
(2)再证明1+1/2+1/3+...+1/(2^n)<=1/2+n
令f(n)=(1+1/2+1/3+...+1/(2^n))-(1/2+n)
=1/2-n+1/2+1/3+...+1/2^n
当n=1时,f(n)=0
当n>1时,假设f(n)<=0
则有f(n+1)=1/2-(n+1)+1/2+1/3+...+1/2^(n+1)
=f(n)+1/(2^n+1)+...+1/2^(n+1)-1
<=f(n)+(2^(n+1)-2^n)/(2^n+1)-1
=f(n)-1/(2^n+1)
<0
由此可知,对于任意n>0总有1+1/2+1/3+...+1/(2^n)<=1/2+n
综上所述,1+n/2<=1+1/2+1/3+...+1/(2^n)<=1/2+n
(1)首先证明1+n/2<=1+1/2+1/3+...+1/(2^n)
令f(n)=(1+1/2+1/3+...+1/(2^n))-(1+n/2)
=1/2+1/3+...+1/2^n-n/2
当n=1时,f(n)=0
当n>1时,假设f(n)>=0
则有f(n+1)=1/2+1/3+...+1/2^(n+1)-(n+1)/2
=f(n)+1/(2^n+1)+...+1/2^(n+1)-1/2
>=f(n)+(2^(n+1)-2^n)/(2^(n+1))-1/2
=f(n)+1
>0
由此可知,对于任意n>0总有1+n/2<=1+1/2+1/3+...+1/(2^n)
(2)再证明1+1/2+1/3+...+1/(2^n)<=1/2+n
令f(n)=(1+1/2+1/3+...+1/(2^n))-(1/2+n)
=1/2-n+1/2+1/3+...+1/2^n
当n=1时,f(n)=0
当n>1时,假设f(n)<=0
则有f(n+1)=1/2-(n+1)+1/2+1/3+...+1/2^(n+1)
=f(n)+1/(2^n+1)+...+1/2^(n+1)-1
<=f(n)+(2^(n+1)-2^n)/(2^n+1)-1
=f(n)-1/(2^n+1)
<0
由此可知,对于任意n>0总有1+1/2+1/3+...+1/(2^n)<=1/2+n
综上所述,1+n/2<=1+1/2+1/3+...+1/(2^n)<=1/2+n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个直接证明不是更方便么...为何一定要用归纳法呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询