求微积分高手解答: (求详细过程)
1个回答
展开全部
第1题:
x²+y²=ax(假定a>0),(x-a/2)²+y²=(a/2)²
此方程也表示圆柱面与xOy平面的交线,其参数方程是r=acosθ
所求面积是对称的,S[总]=2S[上]([]表示下标,下同)
对上半部分,z=√(a²-x²-y²),dS=√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy=a/√(a²-x²-y²)*dxdy
S[上]=∫∫[Dxy]a/√(a²-x²-y²)*dxdy
=∫∫[Dxy]a/√(a²-r²)*rdrdθ
=∫[-π/2,π/2]adθ∫[0,acosθ]rdr/√(a²-r²)
=∫[-π/2,π/2]adθ∫[0,acosθ](-1/2)*(a²-r²)^(-1/2)*d(a²-r²)
=∫[-π/2,π/2]adθ*[(-1/2)*2*(a²-r²)^(1/2)]|[0,acosθ]
=∫[-π/2,π/2]adθ*[-√(a²-r²)]|[0,acosθ]
=∫[-π/2,π/2]a(a-a|sinθ|)dθ
=a²∫[-π/2,π/2](1-|sinθ|)dθ
=2a²∫[0,π/2](1-sinθ)dθ
=2a²*(θ+cosθ)|[0,π/2]
=2a²*[(π/2+0)-(0+1)]
=2a²*(π/2-1)
=(π-2)a²
S[总]=2S[上]=2*(π-2)a²=(2π-4)a²
第2题:
设所围成的图形在z²=4ax(a>0)上的面积为S[1],在x²+y²=ax(a>0)上的面积为S[2]
z=z(x,y)=2√(ax),∂z/∂x=√(a/x)
dS=√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy=√(1+a/x)dxdy
x²+y²=ax,y=±√(ax-x²)
S[1]=2∫∫[Dxy]√(1+a/x)dxdy
=2*2∫[0,a]√(1+a/x)dx∫[0,√(ax-x²)]dy
=4∫[0,a]√(1+a/x)*√(ax-x²)dx
=4∫[0,a]√[(1+a/x)*(ax-x²)]dx
=4∫[0,a]√(a²-x²)dx
=4*(1/4)πa²
=πa²
x²+y²=ax,不妨设y>0,y=y(x,z)=√(ax-x²),∂y/∂x=(a-2x)/[2√(ax-x²)]
dS=√[1+(∂y/∂x)²+(∂y/∂z)²]dxdz=a/[2√(ax-x²)]dxdz
S[2]=2∫∫[Dxz]a/[2√(ax-x²)]dxdz
=2*2∫[0,a]a/[2√(ax-x²)]dx∫[0,2√(ax)]dz
=4∫[0,a]a/[2√(ax-x²)]*2√(ax)dx
=4∫[0,a](a√a)/√(a-x)dx
=-4*a^(3/2)∫[0,a](a-x)^(-1/2)*d(a-x)
=-4*a^(3/2)*[2*(a-x)^(1/2)]|[0,a]
=-4*a^(3/2)*(0-2√a)
=8a²
S[总]=S[1]+S[2]=πa²+8a²=(π+8)a²
回答完毕,谢谢!
x²+y²=ax(假定a>0),(x-a/2)²+y²=(a/2)²
此方程也表示圆柱面与xOy平面的交线,其参数方程是r=acosθ
所求面积是对称的,S[总]=2S[上]([]表示下标,下同)
对上半部分,z=√(a²-x²-y²),dS=√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy=a/√(a²-x²-y²)*dxdy
S[上]=∫∫[Dxy]a/√(a²-x²-y²)*dxdy
=∫∫[Dxy]a/√(a²-r²)*rdrdθ
=∫[-π/2,π/2]adθ∫[0,acosθ]rdr/√(a²-r²)
=∫[-π/2,π/2]adθ∫[0,acosθ](-1/2)*(a²-r²)^(-1/2)*d(a²-r²)
=∫[-π/2,π/2]adθ*[(-1/2)*2*(a²-r²)^(1/2)]|[0,acosθ]
=∫[-π/2,π/2]adθ*[-√(a²-r²)]|[0,acosθ]
=∫[-π/2,π/2]a(a-a|sinθ|)dθ
=a²∫[-π/2,π/2](1-|sinθ|)dθ
=2a²∫[0,π/2](1-sinθ)dθ
=2a²*(θ+cosθ)|[0,π/2]
=2a²*[(π/2+0)-(0+1)]
=2a²*(π/2-1)
=(π-2)a²
S[总]=2S[上]=2*(π-2)a²=(2π-4)a²
第2题:
设所围成的图形在z²=4ax(a>0)上的面积为S[1],在x²+y²=ax(a>0)上的面积为S[2]
z=z(x,y)=2√(ax),∂z/∂x=√(a/x)
dS=√[1+(∂z/∂x)²+(∂z/∂y)²]dxdy=√(1+a/x)dxdy
x²+y²=ax,y=±√(ax-x²)
S[1]=2∫∫[Dxy]√(1+a/x)dxdy
=2*2∫[0,a]√(1+a/x)dx∫[0,√(ax-x²)]dy
=4∫[0,a]√(1+a/x)*√(ax-x²)dx
=4∫[0,a]√[(1+a/x)*(ax-x²)]dx
=4∫[0,a]√(a²-x²)dx
=4*(1/4)πa²
=πa²
x²+y²=ax,不妨设y>0,y=y(x,z)=√(ax-x²),∂y/∂x=(a-2x)/[2√(ax-x²)]
dS=√[1+(∂y/∂x)²+(∂y/∂z)²]dxdz=a/[2√(ax-x²)]dxdz
S[2]=2∫∫[Dxz]a/[2√(ax-x²)]dxdz
=2*2∫[0,a]a/[2√(ax-x²)]dx∫[0,2√(ax)]dz
=4∫[0,a]a/[2√(ax-x²)]*2√(ax)dx
=4∫[0,a](a√a)/√(a-x)dx
=-4*a^(3/2)∫[0,a](a-x)^(-1/2)*d(a-x)
=-4*a^(3/2)*[2*(a-x)^(1/2)]|[0,a]
=-4*a^(3/2)*(0-2√a)
=8a²
S[总]=S[1]+S[2]=πa²+8a²=(π+8)a²
回答完毕,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询