展开全部
sinB/sinA+sinA/sinB=6cosC
sin(A+C)/sinA+sin(B+C)/sinB=6cosC
(sinAcosC+cosAsinC)/sinA+(sinBcosC+cosBsinC)/sinB=6cosC
(cosC+sinC/tanA)+(cosC+sinC/tanB)=6cosC
(1+tanC/tanA)+(1+tanC/tanB)=6
tanC/tanA+tanC/tanB=4
sin(A+C)/sinA+sin(B+C)/sinB=6cosC
(sinAcosC+cosAsinC)/sinA+(sinBcosC+cosBsinC)/sinB=6cosC
(cosC+sinC/tanA)+(cosC+sinC/tanB)=6cosC
(1+tanC/tanA)+(1+tanC/tanB)=6
tanC/tanA+tanC/tanB=4
本回答被提问者采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询