定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s^2-2s
定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s^2-2s)≤-f(2t-t^2),则当1≤s≤4时,...
定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s^2-2s)≤-f(2t-t^2) ,则当1≤s≤4时,t/s的取值范围是?请写出详细的解答过程,或画出图象说明。
展开
2个回答
展开全部
解:∵函数y=f(x-1)的图象关于(1,0)成中心对称,
∴函数y=f(x)的图象关于(0,0)成中心对称,
即y=f(x)为奇函数.
不等式f(s²-2s)≤-f(2t-t²)可化为
f(s²-2s)≤f(t²-2t),
又定义在R上的函数y=f(x)是减函数,
∴s²-2s≥t²-2t.(1≤s≤4)
由1≤s≤4,得-1≤s²-2s≤8,∴t²-2t≤8即-2≤t≤4.
s²-2s≥t²-2t可化为t²-s²-2t+2s≤0,
即(t-s)[t-(2-s)] ≤0,
又∵1≤s≤4,∴2-s≤s,
得,2-s≤t≤s,
因此,点(s,t)应在由不等式组①1≤s≤4②-2≤t≤4③2-s≤t≤s所确定的区域D内.
利用线性规划知识可得,区域D内任意一点与原点的连线的斜率的取值范围是[-1/2,1],
即t/s的取值范围是[-1/2,1].
∴函数y=f(x)的图象关于(0,0)成中心对称,
即y=f(x)为奇函数.
不等式f(s²-2s)≤-f(2t-t²)可化为
f(s²-2s)≤f(t²-2t),
又定义在R上的函数y=f(x)是减函数,
∴s²-2s≥t²-2t.(1≤s≤4)
由1≤s≤4,得-1≤s²-2s≤8,∴t²-2t≤8即-2≤t≤4.
s²-2s≥t²-2t可化为t²-s²-2t+2s≤0,
即(t-s)[t-(2-s)] ≤0,
又∵1≤s≤4,∴2-s≤s,
得,2-s≤t≤s,
因此,点(s,t)应在由不等式组①1≤s≤4②-2≤t≤4③2-s≤t≤s所确定的区域D内.
利用线性规划知识可得,区域D内任意一点与原点的连线的斜率的取值范围是[-1/2,1],
即t/s的取值范围是[-1/2,1].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询