如图,已知∠ABC的角平分线BM.CN相交于点P,求证:点P到三边AB.BC.CA的距离相等。
展开全部
证明:如图,过点P作三边AB、BC、CA所在直线的垂线,垂足分别是Q、M、N.
则垂线段PQ、PM、PN,即为P点到三边AB、BC、CA所在直线的距离.
∵P是∠ABC的平分线BD上的一点,
∴PM=PQ.
∵P是∠ACM的平分线CE上的一点,
∴PM=PN.
∴PQ=PM=PN.
∴P点到三边AB、BC、CA所在直线的距离相等.
则垂线段PQ、PM、PN,即为P点到三边AB、BC、CA所在直线的距离.
∵P是∠ABC的平分线BD上的一点,
∴PM=PQ.
∵P是∠ACM的平分线CE上的一点,
∴PM=PN.
∴PQ=PM=PN.
∴P点到三边AB、BC、CA所在直线的距离相等.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询