设随机变量X~U(0,1),试求Y=1-2X的概率密度

 我来答
高启强聊情感
高粉答主

2020-06-14 · 关注我不会让你失望
知道大有可为答主
回答量:5789
采纳率:100%
帮助的人:153万
展开全部

随机变量X~U(0,1),求Y=X²的概率密度

P{Y≤y}=P{x^2≤y}=P{-√y≤x≤√y}=1-2P{x≥√y}=1-2(1-P{x≤√y})

=-1+2P{x≤√y}

2F(√y)-1

fY(y)=[F(√y)]'=f(√y)/2√y

f(x)=1,0<x<1;那么fYy=1/2√y,0<y<1。

扩展资料:

概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。

单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。

所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式