在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、 Y轴的正半轴上,OA=3,OB=4,D为边

在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、Y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(Ⅰ)若E为边OA上的一个动点,当△CDE... 在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、
Y轴的正半轴上,OA=3,OB=4,D为边OB的中点.
(Ⅰ)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;
(Ⅱ)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.
展开
474415634
2010-09-06 · TA获得超过233个赞
知道答主
回答量:8
采纳率:0%
帮助的人:0
展开全部
解:
作点 关于 轴的对称点 ,在 边上截取 ,
连接 与 轴交于点 ,在 上截取 .
∵ GC‖EF, ,∴ 四边形 为平行四边形,有 .
又 、 的长为定值,∴ 此时得到的点 、 使四边形 的周长最小.
∵ OE‖BC,∴ Rt△ ∽Rt△ , ∴ .
∴ .
∴ .
∴ 点 的坐标为( ,0),点 的坐标为( ,0)

参考资料: http://dayi.prcedu.com/question_463823&see=y

清新Z雯美
2012-02-27 · TA获得超过140个赞
知道答主
回答量:18
采纳率:0%
帮助的人:3.2万
展开全部
⑴如图,作点D关于x轴的对称点D',连接CD'与x轴交于点E,连接DE.
若在边OA上任取点E'与点E不重合、,连接CE'、DE'、D'E'

由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE,
可知△CDE的周长最小.
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D'O=DO=2,D'B=6,
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BC,

如图,作点D关于x轴的对称点D',在CB边上截取CG=2,连接D'G与x轴交于点E,在EA上截取EF=2,
∵GC∥EF,GC=EF,
∴四边形GEFC为平行四边形,有GE=CF,
又DC、EF的长为定值,
∴此时得到的点E、F使四边形CDEF的周长最小.
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BG,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式