请教一道数学题,请,高手进。
若有理数Q属于M,则数集M必为数域判断对误这句话是错的它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍...
若有理数Q属于M,则数集M必为数域 判断对误
这句话是错的
它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍根号2不属于M,故错。
非常非常不能理解它的解释....
不懂(⊙_⊙)?它的解释为什么要设是根号2?
然后一个人告诉我:由于数域的要求就是任何一个元素,经过加、乘运算之后还属于这个集合才可以。
所以,如果根号2属于M,2是有理数所以属于M,但是根号2和2相乘所得的结果不在M里,它既不是根号2也不是有理数,所以这不是数域。
我还是不能明白,请高手告诉我,谢谢!
既然M属于Q为什么要设根号2属于M?这个解释...不能理解 展开
这句话是错的
它的解释是这样:设M中除了有理数外还有另一个元素根号2,则Q属于M,因为2属于整数所以2倍根号2也必须在M内,而2倍根号2不属于M,故错。
非常非常不能理解它的解释....
不懂(⊙_⊙)?它的解释为什么要设是根号2?
然后一个人告诉我:由于数域的要求就是任何一个元素,经过加、乘运算之后还属于这个集合才可以。
所以,如果根号2属于M,2是有理数所以属于M,但是根号2和2相乘所得的结果不在M里,它既不是根号2也不是有理数,所以这不是数域。
我还是不能明白,请高手告诉我,谢谢!
既然M属于Q为什么要设根号2属于M?这个解释...不能理解 展开
展开全部
总而言之,言而总之,这个题目你不懂,是因为你不懂数域的概念!
弄清数域的概念,这个题目你基本上就了解了。
数集m要想是数域,他必须满足对于加减乘除的运算封闭,才能叫做数域。什么是运算封闭呢?比如有理数集,它里面的数经过运算,结果还是有理数,他不会得到无理数。所以有理数集就是数域。而题中m包括有理数,它还可能包括无理数。但是包括的无理数的个数不能确定。所以如果只包括一个无理数,那么经过加减乘除的运算后(比如根号2加根号2得到2倍根号2)会得到别的无理数,这样就出现了集合m以外的数,所以m不一定具备封闭性。所以m不一定是数域!
对于数域的解释可能还不够细致,你可以在网上查找一下概念,或者找大学的代数数看看,这个概念大学才学。
弄清数域的概念,这个题目你基本上就了解了。
数集m要想是数域,他必须满足对于加减乘除的运算封闭,才能叫做数域。什么是运算封闭呢?比如有理数集,它里面的数经过运算,结果还是有理数,他不会得到无理数。所以有理数集就是数域。而题中m包括有理数,它还可能包括无理数。但是包括的无理数的个数不能确定。所以如果只包括一个无理数,那么经过加减乘除的运算后(比如根号2加根号2得到2倍根号2)会得到别的无理数,这样就出现了集合m以外的数,所以m不一定具备封闭性。所以m不一定是数域!
对于数域的解释可能还不够细致,你可以在网上查找一下概念,或者找大学的代数数看看,这个概念大学才学。
展开全部
题设是有理数Q属于M,那就要构造一个这样的M作为反例。所以选择了除Q外还有一个无理数元素根号2的特例。事实上选择根号3,根号5或者pi,e都是一样的。然后这个例子的确能说明原命题不成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数域对于+-×÷是封闭的
就是说,数域A中的数通过+-×÷所得到的数仍在数域A中
“它”的解释没错,
令M={√2}∪Q,则 2∈M,√2∈M
但2×√2=2√2不属于M(不属于符号没找到)
故这句话错
就是说,数域A中的数通过+-×÷所得到的数仍在数域A中
“它”的解释没错,
令M={√2}∪Q,则 2∈M,√2∈M
但2×√2=2√2不属于M(不属于符号没找到)
故这句话错
参考资料: http://baike.baidu.com/view/69652.htm?fr=ala0_1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |