初中数学学习心得
数学呢,是一个研究数量,结构变化和空间模型等等的含义的一种科学方式,它是物理化学等科目的基础.而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的.下面就向大家来介绍一下怎么学习初中数学吧!
学习数学还必要的,因为数学是从幼儿园开始就接触的科目,如果说不会数学,那不是太丢人了吗?以下就是关于怎么学习初中数学的技巧:
初中数学整式总结
一:日常数学的学习
首先,在平时的学习数学当中,事先需要在课前进行认真的预习.预习的目的呢,就是为了能够更好的在课堂上吸收老师所讲的知识,通过预习之后.我们把握的程度一般就在80%左右了.随后在预习当中,不懂的地方就要在课堂上解决.不会的地方需要注重的表明起来,之后会了就多做些例题进行巩固.
而且具体的预习方式方法如下:把整本书的题目先都做完,同时画出知识点的含义.这个过程大约在半个小时左右,如果在时间允许的状况之外,还可以先做一下会写的练习题,不会的空下,等到明天老师讲课的时候再做.
其次呢,在学习数学上是需要和练习题一起结合的,如果说你只在课堂上听课是没有用的.因为你虽然说你是听懂了,但是你做题还是不会的,所以数学注重的是做题,在听懂的基础上还是要多做些练习题的,因为练习题多做了.之后你的.能力才会慢慢的增强.如果说遇到了难题,不懂的题一定要提出来,不懂就问,不能把它咽下去,谁也不说,否则在考试的时候遇到这些题目,你依然不会.
然后呢,就是复习,写完作业之后呢,对于当天学的内容需要再看一遍,巩固一下基础知识.然后再买些练习册,或者是在网上搜一些题再做一下.这样有助于你数学成绩的提高.
积极做题
二:考试时的技巧
如果你是想得高分的话,你需要在选择填空,还有计算题上是绝对不能丢分儿的,所以这需要你谨慎的做题.如果是一开始不知道一道题该怎么做,但是后来突然明白的那一种,千万要冷静,不能瞎写,要先在草稿纸上写一遍,最后再放在答题纸上.
以上就是关于怎么学习初中数学的一些技巧.希望大家是可以理解的.其实学习数学并不难,重要的是要多做题.并且了解题型的技巧.
那么,学好数学是不是很难呢?现在让你们再回去学习小学数学,会有困难吗?当然没有。这就对了。一方面,是因为小学数学确实不难;另一方面,你们现在是初中学生了,站在了人生的又一个高度,你们是用俯视(也可能是藐视)的眼光看待你们学过的小学数学内容,首先在心理上你就是一个胜利者。其实,我们学习数学就需要这样一种心理。不妨设想一下,假如你是高中学生,你又会如何看待初中数学的内容呢?
世上无难事,只怕有心人。进入中学,要尽快适应初中数学的教学,要在理解上下功夫。数学是最讲理的一门学科,数学语言又是最严密的语言。要力求改变被动学习的现状,积极主动地去学习,尽快把学习成绩赶上去。根据我多年的教学经验,我认为同学们掌握正确的数学思想和方法是至关重要的,是事半功倍的关键所在。
所谓“数学学习,一步跟不上,则步步跟不上”,是不是说反正你已拉下了好多内容没有学会,就学不好新知识了呢?完全不是这么回事。我经常给同学们讲:你们学习好的希望只有两个,一是课堂,二是你自己。课堂上要专心听讲,听不懂的地方,那是因为涉及到这个知识点的旧知识你没学好,以至于你的思维在某一个地方卡住了,这时你要做的只是把以前和这个知识点有关的知识好好补一补。其实最好的方法是养成预习的好习惯,提前预习新课,发现问题,认真思索问题的原因,看看是不是因为过去某个知识点没有掌握的缘故,缺什么补什么,这样就可以保证新课能听懂了。当然,人无毅力,将一事无成,如果你自己没有解决问题的毅力和决心,那是谁也没有办法的,所谓天作孽,犹可活,自作孽,不可活,就是这个道理。
我觉得学习数学,要以教科书为根据,做到“四个认真”,即:认真预习、认真听课、认真复习、认真做题。预习时要做到“五要”:①要用波浪线划出重点;②要将公式及结论做记号;③要在看不懂、有疑问的地方用铅笔画问号;④要将简单习题的答案、解题要点写在后面;⑤如果定义、定理中的条件不止一个,就要把条件编上号码。
认真预习后再去听课,比不预习要好得多。听课后,在做习题前,还要进行复习,检查书上还有哪些文字看不懂,要认真想,都想明白了,再开始做题。通过做题,可以对学过的知识加深记忆。
下面,我再就如何学好数学做一下具体讲解,希望对大家有所帮助。
一、杜绝负面的自我暗示,把自信贯穿于解题过程的始终。
首先,要对数学学习不要抱有放弃的想法。有些同学认为数学差一点没关系,只要在其他科目上多用功就可以把总分补回来,这种想法是非常错误的。教育界有一个“木桶原理”:一只木桶盛水量的多少取决于它最短的一块木板。无论是中考还是高考,只有各科全面发展才能取得好成绩。其次,要杜绝负面的自我暗示。我们每年都会有许许多多的考试,不可能每一次都取得自己理想的成绩。在失败的时候不要有“我肯定没希望了”、“我是学不好了”这样的暗示。相反地,要对自己始终充满信心,要相信只要自己努力,最终成功会来到自己的身边。
在平常学习过程中,许多同学自我感觉掌握得很好,而一做题,却往往做不出来。老师稍微点拔一下,却又马上豁然开朗。也就是说,这些题并不是绝对做不出来。只要认真地去思考,通过分析、综合,运用各种数学思想和方法,去比比画画、写写算算,经过迂回曲折的推理或演算,就能逐渐发现题目的条件和结论之间的本质联系。自信是成功的秘诀,这并不是一句空话。面对稍为复杂一点的题,要充满自信,要知道,这些题目一般情况下不会超出自己的知识范畴,是能够用自己所学过的知识把它解出来的。要敢于去思考,并善于去思考,这是一种很重要的思维品质。具体解题时,一定要认真审题,正确区分条件和结论,并抓住两个主要环节:一是紧紧抓住这一道题和一类题之间的共性,想想这一类题的一般思路和一般解法;二是紧紧抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。选择一个或几个条件作为解题的突破口,看由这些条件能得出什么过渡结论,得出的越多越好,然后筛选出有用的结论,进一步进行推理或演算。这就是老师常给同学们讲的:“聪明的同学是一类一类地学,不聪明的同学是一道一道地学”。要知道,题海无边,只有举一反三,触类旁通,才能跳出题海,领会数学学习的奥妙。
二、仔细看书,弄懂数学语言;认真听课,掌握思维方法。
不爱读数学教科书,是中学生的“通病”。数学教科书是用数学语言写它成包括文字语言、符号语言、图形语言。它语言简洁、逻辑性强、内涵丰富、含义深刻,因而看数学教科书切不可浮光掠影,一目十行。
数学概念、定义、定理等都用文字语言表述,看书时务必留心。符号语言有丰富的内涵,要写得出,辩得清、记得牢。读符号语言,要说得出它的涵义,辩得明它的特征。
图形语言既能反映元素的相对位置,又是数量关系的直接反映。因而观看几何图形时要读懂隐藏在图形元素之间的内在联系及数量关系;而观看图像,要从其形状窥视出函数的性质。
如果课前、课后阅读数学书能达到上述要求,学数学也就入门了;若由此养成读书的良好习惯,提高成绩则指日可待。
听课要全神贯注,随着老师的讲解积极思维。预习时似懂非懂的概念弄明白了么?疑团化解了么?老师口授的真知灼见、补充的例题、精彩的解法,要抓紧记录下来。写好听课笔记,不但留下一份宝贵的资料,而且也能促使自己注意力集中。记笔记别丢了“西瓜”,也就是说要不影响听课的效果。有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。
听课时还要做到不断生疑、质疑,敢于提问、答问。要想想老师的讲解是否完整无误,解法是否严谨无瑕。板书的范例如果懂了,就应思谋新的解法;如果有疑点就应大胆质疑。争着回答问题绝不是“图表现”,而是阐述自己的见解,提高自己的口头表达能力。即使自己回答错了,将问题暴露后,也便于订证。听课最忌盲从,随波逐流,人云亦云,不懂装懂。
无论是中考还是高考,数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了。要想做好基础题,平时上课时的听课效率便显得格外重要。一般来说,丰富经验的老师上课时(尤其是复习阶段)的内容可谓是精华,认真听讲45分钟要比自己在家复习两个小时还要有效。
三、独立钻研,学会归纳总结;用好参考书,拓展个人视野.
养成良好的独立钻研学习的习惯必须做到:①按时完成作业,巩固所学知识。作业惟有按时完成,才能得以巩固知识,尽量减少遗忘。而在完成作业的过程中,将增大知识复现率,促进自己的思考力,发挥解决问题的创造力。善于学习的同学还应注意作业的保洁与收藏,因为这既是珍视自己的劳动成果,也是很好的复习资料。②适时复习功课,形成知识网络。章节复习、单元复习、迎考复习等是数学学习不可或缺的一部份,它有承前启后的作用。复习时应按照一定的系统归纳总结知识,总结方法,形成数学的“经纬网”。这里的“经”指的是数学的各个分支的知识;“纬”指的是相同的数学方法在不同分支中的应用。要想学好数学就必须织好数学的“经纬网”。③应注重书写的规范化。数学学科是一门专业性很强的学科,它对表达、叙述的过程,符号使用的规定都有严格的要求。因而在做练习、作业、考试时书写都应规范化。④运用所学知识,不断开拓创新。数学有很强的联贯性,新旧知识之间并没有不可逾越的鸿沟。因此借书本知识,进行联想,不但可以增强钻研兴趣,而且能培养自己的创造性思维能力。
在选择参考书方面可以听一下老师的意见。一般来说,老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多。在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。做题的时候要多做基础题,并且要定好时间,这样可以提高解题速度。
在考前冲刺阶段要保证1—2天做一套试卷来保持状态。最重要的是,要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握。
在这里有个小建议:在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习。
四、记住必要的基础知识是熟练解题的关键。
有的同学认为,只有语文、英语、政治、历史、地理、生物等学科才需要记忆,而数学靠的是运算、推理和分析,是不需要记忆的。这种认识是大错特错的。“博闻强记”是做学问的不二法门。不记住必要的数学基础知识,你的数学思维的空间就会越来越窄,势必让你的数学学习走进死胡同。例如,不记住小学的 “九九乘法口诀表”,你能顺利地进行乘法运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81 就太不合算了。而用“九九八十一”求出结果就方便多了。又如,你在解方程2x2+3x-1=0时,如果你不记住一元二次方程的求根公式 ,你只能用比较繁琐的配方法一步步去推理。另外,这个公式又是研究一元二次方程根与系数关系、二次函数、一元二次不等式等知识的基础,没有这个公式作基础,这些知识的学习只能陷于进退维谷的地步。其实,数学学习更像游戏,例如,下中国象棋,如果你不记住马走日,象走田,炮打隔一位等游戏规则,你如何能下好中国象棋?这些游戏规则就好像数学学习中的基础知识。
九年义务教育初级中学数学新课程标准》对初中数学中的基础知识作这样的描述:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。”
数学的定义、法则、性质、公式、公理、定理等一定要记熟,要能背诵,朗朗上口。我们常说要在理解的基础上去记忆。但有些基础知识,如定义,是没有什么道理好讲的。如一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1,未知数的系数不能为0的方程叫做一元一次方程。在这个定义中,为什么只含有一个未知数而不是两个、三个,为什么未知数的最高次数是1而不是2或者3,为什么未知数的系数不能为0等,这些问题是没有什么价值的,或者说,定义只不过是对某种事物或现象的一种规定的或固有的含义。而有些基础知识,如法则、公式、定理等,不但要知其然,还要知其所以然。如平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补等,不但要记住,还要能够运用所学知识说明平行的两直线为什么有这样的性质。这就是我们说的在理解的基础上去记忆。在学习过程中,难免有一些暂时不理解的基础知识,在这种情况下,即使死记硬背也要记住,记住后,在后绪的学习过程中再去逐步理解。另外,一些重要的数学方法,数学思想也是需要记住的。只有这样,你在解数学题的过程中才能得心应手,从而体验到数学的美学价值,培养起学好数学的信心。
五、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰。
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识,是属于数学观念一类的东西,比较抽象。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映,它是实施数学思想的手段。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
在初中数学的学习中,要求了解的数学思想有:方程函数的思想、数形结合的思想、转化的思想、分类讨论的思想、隐含条件的思想、整体代换的思想、类比的思想等。要求“了解”的方法有:分类法、类比法、反证法;要求“理解”或“会运用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法、特值法等。其实思想和方法是不能截然分开的,初中数学中用到的各种方法都体现着一定的思想,而数学思想又是对方法的理性认识。因此,通过对数学方法的理解和应用以达到对数学思想的了解,是使思想与方法得到交融的有效方法。
在数学学习的过程中,一定要全面渗透数学思想与方法,学习了一个知识点或做了一道题,要认真思考一下,用到了哪些数学思想与方法。数学思想与方法虽然说法各异,但毕竟是有限的,正确运用数学思想与方法学习数学或解题,有利于对知识进行比较归类,只有这样,才能把所学知识学得系统,学得灵活,才能把所学的知识真正纳入到你的知识结构中去,变成自己的财富。
另外,由于数学思想的抽象性,数学方法虽然比较具体,但方法本身就是科学,是一种更为重要的知识,还是有一定难度的,所以,在刚接触时,难免理不出头绪,这是一种正常现象,不用产生惧怕心理。特别是数学思想,是一个逐渐渗透的过程,要在循序渐进的学习过程中结合具体的数学知识或题目去理解。
如在学习有理数、三角形、四边形、圆周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,会涉及到分类讨论的思想。分类讨论思想的原则是:标准统一、不重不漏。它的优点是具有明显的逻辑性特点,能很好地训练一个人思维的条理性和概括性。
方程的思想实现了由小学的算术法向初中代数法的转化,这是数学思想的一个实质性飞跃。方程的思想是指对于数学问题中的未知量和已知量之间的关系,用构建方程的方法去解决。我们会发现,许多问题只要借助列方程的方法去解决,往往使得问题迎刃而解。
数形结合的思想有利于把抽象的知识形象化。在初中数学的学习中,“数”与“形”是密不可分的,如借助数轴能很好地理解有理数的有关概念和运算,许多列方程解应用题的题目通过题意画出图形能容易地找出各量之间的相等关系,函数问题等就更离不开图象了。往往借助图象能使问题明朗化,容易找到问题的关键所在,从而解决问题。
转化的思想具体表现为从未知到已知的转化、一般到特殊的转化等。
这些数学思想与方法,也会贯穿在老师教学的过程中,在课堂上要注意专心听讲,向老师学习,向课堂学习。布鲁纳指出:掌握数学思想方法可以使数学更容易理解和记忆。充分说明了数学思想与方法的重要性。
六、形成良好的思维品质是理解数学问题的基础。
数学,作为培养人的思维能力的一门学科,以其理性的思考而引人入胜。它不像游山观景,以其迷人的景色让人赏心悦目,流连忘返。数学学习,是通过思考与反思去研究事物的空间形式和数量关系,让事物的空间形式与数量关系呈现出来。只有形成良好的思维品质,以良好的思维品质这把利刃拔开事物的表象,才能“看”到事物的本质。
那么什么是良好的思维品质呢?我们以生活中“串门”这种现象为例来说明。许多人都有这样的生活体验,让别人带着去某人家串门,去了一次,两次,也可能是多次。有一天你不得不自己去某人家串门。当你走到某人家附近时,面对林立的整齐划一的建筑群,你茫然失措了,不知道某人家到底在哪儿。
在学习过程中,我们就经常出现这样的现象。在课堂上,老师讲得头头是道,同学们听得只点头,感觉明白至极。而一让同学们自己做题,又不知从何入手了。主要原因就在于同学们没有对所学的知识进行深入的思考,去理解所学知识的本质。就像串门,每次去某人家的时候,我们就应该对某人家周围的地理环境,特别是有什么特殊的标志进行记忆一样。要理解我们所学的知识有什么特点,有哪些内容是需要记住的,特别是这一节知识涉及到哪些数学思想和方法是需要及时掌握的。该记忆的内容要注意用心去记,只有记住必要的知识,思维才有依据。另外,要注意作好笔记。培根在《论求知》中说:“作笔记能使知识精确。如果一个人不愿做笔记,他的记忆力就必须强而可靠”。要注意把老师讲的重点,特别是老师总结的一些经验性、规律性的知识记下来,便于课后及时复习。课后复习,要思考有哪些问题已经搞会了,有哪些问题还没有搞会,并及时做好查漏补缺的工作。
七、应考时要舍得放弃。
对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择。一般来说,质量较高的数学试卷,最后两题对于能力的要求较高。数学基础较弱的同学不要花太多的时间在这里,而应把精力放在前面的基础题上,这样成绩反而会有所提高。中高考的大题目都是按过程给分的,所以万一遇到不会的题也不要空着,应根据题意尽量多写一些步骤。
在对待粗心这个常见问题上,我有一个建议,就是要养成打草稿的习惯,而且要规范草稿,把打草稿当成规范的作业去对待(只是不抄题罢了),让你的草稿一目了然,这样便不太会出现看错或抄错的现象了。
考试中有时可以用计算器来提高解题速度解决难题。但是,在考试过后一定要把题目正规的解题思路了解清楚。每一次考试的试卷都是珍贵的复习资料,一定要妥善保存。
以上从七个方面谈了如何学好初中数学的问题。要学好初中数学,除了要做到上边所谈外,勤奋刻苦的学习精神,认真仔细的学习态度,培养良好的学习习惯也是学好数学的关键。在课堂上,不仅是学习新知识,还要潜移默化地学习老师解决问题的思维方式,面对一个问题,最后是提前思考,找出自己的思维方式,然后把自己的思维方式与老师的思维方式作比较,取长补短,进而形成自己的思维方式。由“要我学”转变为“我要学”,培养学习的主动性,克服被动学习的局面。真正掌握数学学习的要领。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的数学基础知识,掌握学习数学的思想与方法,只是学好数学的前提,能独立解题、解对题才是学好数学的标志。
那么,学好数学是不是很难呢?现在让你们再回去学习小学数学,会有困难吗?当然没有。这就对了。一方面,是因为小学数学确实不难;另一方面,你们现在是初中学生了,站在了人生的又一个高度,你们是用俯视(也可能是藐视)的眼光看待你们学过的小学数学内容,首先在心理上你就是一个胜利者。其实,我们学习数学就需要这样一种心理。不妨设想一下,假如你是高中学生,你又会如何看待初中数学的内容呢?
世上无难事,只怕有心人。进入中学,要尽快适应初中数学的教学,要在理解上下功夫。数学是最讲理的一门学科,数学语言又是最严密的语言。要力求改变被动学习的现状,积极主动地去学习,尽快把学习成绩赶上去。根据我多年的教学经验,我认为同学们掌握正确的数学思想和方法是至关重要的,是事半功倍的关键所在。
所谓“数学学习,一步跟不上,则步步跟不上”,是不是说反正你已拉下了好多内容没有学会,就学不好新知识了呢?完全不是这么回事。我经常给同学们讲:你们学习好的希望只有两个,一是课堂,二是你自己。课堂上要专心听讲,听不懂的地方,那是因为涉及到这个知识点的旧知识你没学好,以至于你的思维在某一个地方卡住了,这时你要做的只是把以前和这个知识点有关的知识好好补一补。其实最好的方法是养成预习的好习惯,提前预习新课,发现问题,认真思索问题的原因,看看是不是因为过去某个知识点没有掌握的缘故,缺什么补什么,这样就可以保证新课能听懂了。当然,人无毅力,将一事无成,如果你自己没有解决问题的毅力和决心,那是谁也没有办法的,所谓天作孽,犹可活,自作孽,不可活,就是这个道理。
我觉得学习数学,要以教科书为根据,做到“四个认真”,即:认真预习、认真听课、认真复习、认真做题。预习时要做到“五要”:①要用波浪线划出重点;②要将公式及结论做记号;③要在看不懂、有疑问的地方用铅笔画问号;④要将简单习题的答案、解题要点写在后面;⑤如果定义、定理中的条件不止一个,就要把条件编上号码。
认真预习后再去听课,比不预习要好得多。听课后,在做习题前,还要进行复习,检查书上还有哪些文字看不懂,要认真想,都想明白了,再开始做题。通过做题,可以对学过的知识加深记忆。
下面,我再就如何学好数学做一下具体讲解,希望对大家有所帮助。
一、杜绝负面的自我暗示,把自信贯穿于解题过程的始终。
首先,要对数学学习不要抱有放弃的想法。有些同学认为数学差一点没关系,只要在其他科目上多用功就可以把总分补回来,这种想法是非常错误的。教育界有一个“木桶原理”:一只木桶盛水量的多少取决于它最短的一块木板。无论是中考还是高考,只有各科全面发展才能取得好成绩。其次,要杜绝负面的自我暗示。我们每年都会有许许多多的考试,不可能每一次都取得自己理想的成绩。在失败的时候不要有“我肯定没希望了”、“我是学不好了”这样的暗示。相反地,要对自己始终充满信心,要相信只要自己努力,最终成功会来到自己的身边。
在平常学习过程中,许多同学自我感觉掌握得很好,而一做题,却往往做不出来。老师稍微点拔一下,却又马上豁然开朗。也就是说,这些题并不是绝对做不出来。只要认真地去思考,通过分析、综合,运用各种数学思想和方法,去比比画画、写写算算,经过迂回曲折的推理或演算,就能逐渐发现题目的条件和结论之间的本质联系。自信是成功的秘诀,这并不是一句空话。面对稍为复杂一点的题,要充满自信,要知道,这些题目一般情况下不会超出自己的知识范畴,是能够用自己所学过的知识把它解出来的。要敢于去思考,并善于去思考,这是一种很重要的思维品质。具体解题时,一定要认真审题,正确区分条件和结论,并抓住两个主要环节:一是紧紧抓住这一道题和一类题之间的共性,想想这一类题的一般思路和一般解法;二是紧紧抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。选择一个或几个条件作为解题的突破口,看由这些条件能得出什么过渡结论,得出的越多越好,然后筛选出有用的结论,进一步进行推理或演算。这就是老师常给同学们讲的:“聪明的同学是一类一类地学,不聪明的同学是一道一道地学”。要知道,题海无边,只有举一反三,触类旁通,才能跳出题海,领会数学学习的奥妙。
二、仔细看书,弄懂数学语言;认真听课,掌握思维方法。
不爱读数学教科书,是中学生的“通病”。数学教科书是用数学语言写它成包括文字语言、符号语言、图形语言。它语言简洁、逻辑性强、内涵丰富、含义深刻,因而看数学教科书切不可浮光掠影,一目十行。
数学概念、定义、定理等都用文字语言表述,看书时务必留心。符号语言有丰富的内涵,要写得出,辩得清、记得牢。读符号语言,要说得出它的涵义,辩得明它的特征。
图形语言既能反映元素的相对位置,又是数量关系的直接反映。因而观看几何图形时要读懂隐藏在图形元素之间的内在联系及数量关系;而观看图像,要从其形状窥视出函数的性质。
如果课前、课后阅读数学书能达到上述要求,学数学也就入门了;若由此养成读书的良好习惯,提高成绩则指日可待。
听课要全神贯注,随着老师的讲解积极思维。预习时似懂非懂的概念弄明白了么?疑团化解了么?老师口授的真知灼见、补充的例题、精彩的解法,要抓紧记录下来。写好听课笔记,不但留下一份宝贵的资料,而且也能促使自己注意力集中。记笔记别丢了“西瓜”,也就是说要不影响听课的效果。有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。
听课时还要做到不断生疑、质疑,敢于提问、答问。要想想老师的讲解是否完整无误,解法是否严谨无瑕。板书的范例如果懂了,就应思谋新的解法;如果有疑点就应大胆质疑。争着回答问题绝不是“图表现”,而是阐述自己的见解,提高自己的口头表达能力。即使自己回答错了,将问题暴露后,也便于订证。听课最忌盲从,随波逐流,人云亦云,不懂装懂。
无论是中考还是高考,数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了。要想做好基础题,平时上课时的听课效率便显得格外重要。一般来说,丰富经验的老师上课时(尤其是复习阶段)的内容可谓是精华,认真听讲45分钟要比自己在家复习两个小时还要有效。
三、独立钻研,学会归纳总结;用好参考书,拓展个人视野.
养成良好的独立钻研学习的习惯必须做到:①按时完成作业,巩固所学知识。作业惟有按时完成,才能得以巩固知识,尽量减少遗忘。而在完成作业的过程中,将增大知识复现率,促进自己的思考力,发挥解决问题的创造力。善于学习的同学还应注意作业的保洁与收藏,因为这既是珍视自己的劳动成果,也是很好的复习资料。②适时复习功课,形成知识网络。章节复习、单元复习、迎考复习等是数学学习不可或缺的一部份,它有承前启后的作用。复习时应按照一定的系统归纳总结知识,总结方法,形成数学的“经纬网”。这里的“经”指的是数学的各个分支的知识;“纬”指的是相同的数学方法在不同分支中的应用。要想学好数学就必须织好数学的“经纬网”。③应注重书写的规范化。数学学科是一门专业性很强的学科,它对表达、叙述的过程,符号使用的规定都有严格的要求。因而在做练习、作业、考试时书写都应规范化。④运用所学知识,不断开拓创新。数学有很强的联贯性,新旧知识之间并没有不可逾越的鸿沟。因此借书本知识,进行联想,不但可以增强钻研兴趣,而且能培养自己的创造性思维能力。
在选择参考书方面可以听一下老师的意见。一般来说,老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多。在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。做题的时候要多做基础题,并且要定好时间,这样可以提高解题速度。
在考前冲刺阶段要保证1—2天做一套试卷来保持状态。最重要的是,要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握。
在这里有个小建议:在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习。
四、记住必要的基础知识是熟练解题的关键。
有的同学认为,只有语文、英语、政治、历史、地理、生物等学科才需要记忆,而数学靠的是运算、推理和分析,是不需要记忆的。这种认识是大错特错的。“博闻强记”是做学问的不二法门。不记住必要的数学基础知识,你的数学思维的空间就会越来越窄,势必让你的数学学习走进死胡同。例如,不记住小学的 “九九乘法口诀表”,你能顺利地进行乘法运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81 就太不合算了。而用“九九八十一”求出结果就方便多了。又如,你在解方程2x2+3x-1=0时,如果你不记住一元二次方程的求根公式 ,你只能用比较繁琐的配方法一步步去推理。另外,这个公式又是研究一元二次方程根与系数关系、二次函数、一元二次不等式等知识的基础,没有这个公式作基础,这些知识的学习只能陷于进退维谷的地步。其实,数学学习更像游戏,例如,下中国象棋,如果你不记住马走日,象走田,炮打隔一位等游戏规则,你如何能下好中国象棋?这些游戏规则就好像数学学习中的基础知识。
九年义务教育初级中学数学新课程标准》对初中数学中的基础知识作这样的描述:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。”
数学的定义、法则、性质、公式、公理、定理等一定要记熟,要能背诵,朗朗上口。我们常说要在理解的基础上去记忆。但有些基础知识,如定义,是没有什么道理好讲的。如一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1,未知数的系数不能为0的方程叫做一元一次方程。在这个定义中,为什么只含有一个未知数而不是两个、三个,为什么未知数的最高次数是1而不是2或者3,为什么未知数的系数不能为0等,这些问题是没有什么价值的,或者说,定义只不过是对某种事物或现象的一种规定的或固有的含义。而有些基础知识,如法则、公式、定理等,不但要知其然,还要知其所以然。如平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补等,不但要记住,还要能够运用所学知识说明平行的两直线为什么有这样的性质。这就是我们说的在理解的基础上去记忆。在学习过程中,难免有一些暂时不理解的基础知识,在这种情况下,即使死记硬背也要记住,记住后,在后绪的学习过程中再去逐步理解。另外,一些重要的数学方法,数学思想也是需要记住的。只有这样,你在解数学题的过程中才能得心应手,从而体验到数学的美学价值,培养起学好数学的信心。
五、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰。
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识,是属于数学观念一类的东西,比较抽象。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映,它是实施数学思想的手段。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
在初中数学的学习中,要求了解的数学思想有:方程函数的思想、数形结合的思想、转化的思想、分类讨论的思想、隐含条件的思想、整体代换的思想、类比的思想等。要求“了解”的方法有:分类法、类比法、反证法;要求“理解”或“会运用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法、特值法等。其实思想和方法是不能截然分开的,初中数学中用到的各种方法都体现着一定的思想,而数学思想又是对方法的理性认识。因此,通过对数学方法的理解和应用以达到对数学思想的了解,是使思想与方法得到交融的有效方法。
在数学学习的过程中,一定要全面渗透数学思想与方法,学习了一个知识点或做了一道题,要认真思考一下,用到了哪些数学思想与方法。数学思想与方法虽然说法各异,但毕竟是有限的,正确运用数学思想与方法学习数学或解题,有利于对知识进行比较归类,只有这样,才能把所学知识学得系统,学得灵活,才能把所学的知识真正纳入到你的知识结构中去,变成自己的财富。
另外,由于数学思想的抽象性,数学方法虽然比较具体,但方法本身就是科学,是一种更为重要的知识,还是有一定难度的,所以,在刚接触时,难免理不出头绪,这是一种正常现象,不用产生惧怕心理。特别是数学思想,是一个逐渐渗透的过程,要在循序渐进的学习过程中结合具体的数学知识或题目去理解。
如在学习有理数、三角形、四边形、圆周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,会涉及到分类讨论的思想。分类讨论思想的原则是:标准统一、不重不漏。它的优点是具有明显的逻辑性特点,能很好地训练一个人思维的条理性和概括性。
方程的思想实现了由小学的算术法向初中代数法的转化,这是数学思想的一个实质性飞跃。方程的思想是指对于数学问题中的未知量和已知量之间的关系,用构建方程的方法去解决。我们会发现,许多问题只要借助列方程的方法去解决,往往使得问题迎刃而解。
数形结合的思想有利于把抽象的知识形象化。在初中数学的学习中,“数”与“形”是密不可分的,如借助数轴能很好地理解有理数的有关概念和运算,许多列方程解应用题的题目通过题意画出图形能容易地找出各量之间的相等关系,函数问题等就更离不开图象了。往往借助图象能使问题明朗化,容易找到问题的关键所在,从而解决问题。
转化的思想具体表现为从未知到已知的转化、一般到特殊的转化等。
这些数学思想与方法,也会贯穿在老师教学的过程中,在课堂上要注意专心听讲,向老师学习,向课堂学习。布鲁纳指出:掌握数学思想方法可以使数学更容易理解和记忆。充分说明了数学思想与方法的重要性。
六、形成良好的思维品质是理解数学问题的基础。
数学,作为培养人的思维能力的一门学科,以其理性的思考而引人入胜。它不像游山观景,以其迷人的景色让人赏心悦目,流连忘返。数学学习,是通过思考与反思去研究事物的空间形式和数量关系,让事物的空间形式与数量关系呈现出来。只有形成良好的思维品质,以良好的思维品质这把利刃拔开事物的表象,才能“看”到事物的本质。
那么什么是良好的思维品质呢?我们以生活中“串门”这种现象为例来说明。许多人都有这样的生活体验,让别人带着去某人家串门,去了一次,两次,也可能是多次。有一天你不得不自己去某人家串门。当你走到某人家附近时,面对林立的整齐划一的建筑群,你茫然失措了,不知道某人家到底在哪儿。
在学习过程中,我们就经常出现这样的现象。在课堂上,老师讲得头头是道,同学们听得只点头,感觉明白至极。而一让同学们自己做题,又不知从何入手了。主要原因就在于同学们没有对所学的知识进行深入的思考,去理解所学知识的本质。就像串门,每次去某人家的时候,我们就应该对某人家周围的地理环境,特别是有什么特殊的标志进行记忆一样。要理解我们所学的知识有什么特点,有哪些内容是需要记住的,特别是这一节知识涉及到哪些数学思想和方法是需要及时掌握的。该记忆的内容要注意用心去记,只有记住必要的知识,思维才有依据。另外,要注意作好笔记。培根在《论求知》中说:“作笔记能使知识精确。如果一个人不愿做笔记,他的记忆力就必须强而可靠”。要注意把老师讲的重点,特别是老师总结的一些经验性、规律性的知识记下来,便于课后及时复习。课后复习,要思考有哪些问题已经搞会了,有哪些问题还没有搞会,并及时做好查漏补缺的工作。
七、应考时要舍得放弃。
对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择。一般来说,质量较高的数学试卷,最后两题对于能力的要求较高。数学基础较弱的同学不要花太多的时间在这里,而应把精力放在前面的基础题上,这样成绩反而会有所提高。中高考的大题目都是按过程给分的,所以万一遇到不会的题也不要空着,应根据题意尽量多写一些步骤。
在对待粗心这个常见问题上,我有一个建议,就是要养成打草稿的习惯,而且要规范草稿,把打草稿当成规范的作业去对待(只是不抄题罢了),让你的草稿一目了然,这样便不太会出现看错或抄错的现象了。
考试中有时可以用计算器来提高解题速度解决难题。但是,在考试过后一定要把题目正规的解题思路了解清楚。每一次考试的试卷都是珍贵的复习资料,一定要妥善保存。
以上从七个方面谈了如何学好初中数学的问题。要学好初中数学,除了要做到上边所谈外,勤奋刻苦的学习精神,认真仔细的学习态度,培养良好的学习习惯也是学好数学的关键。在课堂上,不仅是学习新知识,还要潜移默化地学习老师解决问题的思维方式,面对一个问题,最后是提前思考,找出自己的思维方式,然后把自己的思维方式与老师的思维方式作比较,取长补短,进而形成自己的思维方式。由“要我学”转变为“我要学”,培养学习的主动性,克服被动学习的局面。真正掌握数学学习的要领。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的数学基础知识,掌握学习数学的思想与方法,只是学好数学的前提,能独立解题、解对题才是学好数学的标志。
当然,灯是不足够的兴趣.必须尝试去学习它.至少,一定要记住这本书的概念,公式,最好的时间来预览有什么新的教训,第二天掌握更快,更多,更好的新的一课.类记一些笔记下要点,回家晚上以上回顾,总结和学习新的东西.问老师不明白的主题,并问明了至今.当解决问题的余老师有一个简单的方法,可以提高,与老师和同学们进行了讨论.不要担心自己可能是错误的,但不敢作出这样的问题,这是一个很好的锻炼机会.教师激励我们的人,而不是“拐杖”,关键是要依靠自己的努力,多动脑.通常你可以做一些课外灵活的标题.有时,一个棘手的问题是怎么画,要几天做它,就会有成功的喜悦.
仔细,认真缺一不可.应认真回答每个问题集中思想.甲数学论文,大部分的问题是要计算.我们应该认真计算,有些问题的陷阱一定要小心.卷子做了可怕的仔细检查.
最后一个问题,做题的基础上,确定关键条件,认真了解.在一般情况下,每一个字,每一个条件有一定的作用,应充分利用回答的话题.
:什么样的人数学学习
一个广阔的知识背景
教育是Suhuo穆林斯基说,“必须记住的材料比较复杂,而且必须保持在内存中的主要结论,规则是“知识背景”的学习过程中应该更加广阔.“换句话说,学生必须能够安全地识记,理解和灵活使用的公式,规则的结论,他一定要读,我想对很多并不需要记忆的材料.
调查过程中,我们发现,数学的大学生往往有广泛的知识背景,喜欢阅读一些文学名著,历史传记也喜欢读一些数学方面的书,如“快速计算秘密”,“物理和化学”,以及一个图书馆,书店有趣的智力的书籍.此外,推荐的书目和数学的“好玩的数学”系列“训练思考能力的数学书,数学的故事”. “
除了建立了广阔的知识背景,阅读节制的能力和兴趣的学习有很大的帮助.
像”懒“
数学学科的多功能,有较强的逻辑性和系统性.学习掌握的数学知识,应该有更科学的学习方法,正确的方法,“功夫不负有心人”,更有效的方法是错误的,它会“吃力不讨好“事倍功半.学习效果,更多的研究,更多的兴趣,学习成绩始终不提,它会慢慢失去学习的信心.,是否掌握更科学的学习方法是学习成功的关键.根据出色的完成经验的学生数学学习的本质,我们相信,一个更科学的学习方法和习惯,主要表现为以下五个基本方面.
1,良好的预览的大师讲座主动.凡事预则立,不预则废.
2,注意在课堂上,良好的课堂笔记.讲座提前进入状态.课前准备讲座的效果直接影响
3,及时复习,把知识转化为技能.审查是在学习过程中的一个重要组成部分.评论有计划,有必要及时检讨一天的功课,也及时审查阶段.
4,完成工作认真,形成技能,提高分析问题和解决问题的能力,教育当局杨乐院士回答高中学生如何学习数学的问题,是非常简短的三句话:一类是基于了解和更多的实践,和第二的理解和积累的基础上,第三个是一步一步的实践这里所说的,是做标题,来完成这项工作.
5,及时总结,知识结构化和系统化.一个主题或一个章节的结束,它是要及时总结,每一个方面的程度如何的实施,直接关系到下一个环节的进展和成效.出席第一次彩排,第一次审查工作,常常阶段总结.
每天放学回家,你应该检讨作业的日子里,完成了一天的工作后,排练的第二天功课.这三样东西,一个也不能少,否则就不能保证第二天有一个高品质的演讲效果.
BR /> [提示:使用错题
平时的学习中,教师要求学生腾出一个错题,这很容易让学生回顾,但通常老师复习错题,这只是强调,学生很少问看到别人的错题本.事实上,学生往往借错题非常必要的.借注:
借第一高的水平比他们的同学的错题本,这是很容易丰富,拓宽自己的知识领域.其次,容易错误的问题往往比低级别的学生敲响了警钟.借用相同的时间,做自己的学习笔记,自己平时看到的.至少在开始一个星期有两个重复的读,一个星期后,两个多星期,所以逐渐,这种方法可以应用到其他各种学科.
,良好的动机和学习兴趣
BR />的动机是直接权力影响学生的学习动机和学习兴趣,教师和家长在调查中提到的鼓励的话,通过一些小技巧从小就学习数学的兴趣,促进学生的学习,使学生积极学习.如数学顺口溜,有趣的数学问题,数学讲的故事.自己的数学知识解决实际问题的成就,获得的成就感和自豪感感,计算面积?的书籍,轮胎圆周,大赛颁奖
华说:“有了兴趣已经厌倦了良好的不懈,随之而来的将腾出一些时间来学习的.”
三强的意志
>
正确的动机,并不意味着学生将能够成功地完成学习过程中,大,小,他们会遇到很多困难,在学习数学的过程中,让学生树立坚定的信心面对音乐,然后克服重重困难,获得知识和技能,你需要坚强的意志.许多学生的成绩差,是不是智力或其他方面的问题,但他们缺乏坚强的意志,克服困难,困难的“打退堂鼓,因此,学术总不能去了.学生顽强的意志和坚强决心,提高学生学习的自觉性和坚韧两方面.意识是指学生学习数学的目的和意义有深刻的认识,从而自觉地努力学习.当学生认识到这一点的学习和祖国的未来,他们未来的关系,明确职责,以排除干扰外界的诱惑,使学习成为人们的自觉行动.学习的目的是更清晰的认识更清晰的有意义的学习意识,较强的学习.坚韧的品质,做出不懈的努力,克服困难,完成学习任务.学生在学习过程中,总会遇到一些困难,迎难而上的信心,努力克服困难,表现的坚韧的意志.这是一个非常宝贵的品质.有了这种精神,学习困难或挫折时,不气馁,取得了良好的效果,并不会成为自满,而是要善于总结的经验教训,探索学习的规律和方法,奋勇向前.这将培养创新型人才的质量是非常必要的.
四,自我的信心和勤奋,自信和辛勤工作
也是数学学习上的两个非智力因素有着重要的影响.树立自信,相信自己通过努力学习数学,更重要的是后进生.由于学生的学习失去信心,就会失去克服困难的精神力量.此次收购的数学知识,技能,数学能力,从学生的勤奋和努力是分不开的.因此,学生勤奋好学,刻苦钻研的精神是非常重要的. “的数学家章后说:”有没有捷径可走的道路上学习数学的多个机会,努力学习,持之以恒,会得到良好的结果.“可见,勤奋可以弥补一些学生缺乏智慧,促进学生数学能力的发展.
积极的态度
一个人的客观事物的情感态度和心理体验.我们的研究发现,任何数学始终保持良好的学生在小学和中学时代,往往与教师的情感交流,建立良好的师生关系,并且可以不断交流学习和学生遇到的问题,继续学习,分享经验,共同进步.
让我给你举个例子:李明比较好的数学系的学生数学问题要问他,他总是耐心帮助,以?帮助学生完成整个过程,他不仅帮助学生,并拥有一个更深入的了解数学知识. “你有一个苹果,我有一个苹果,交换仍然是一个苹果,我有一个想法,你有一个想法,交换是两个概念.”李明相同的表,因为学习是很不错的,不敢向别人学习到的知识和能力做笔记的手必须阻止,看到的恐惧,使他的知识和老师传递给他,很快后面李铭许多.
通过上面的分析,我们发现,数学学习,其实是并不困难的.中成长的家庭与儿童,社会,学校有着密切的关系.建议家长给孩子看一些有益的书籍和视频,让更多的孩子参加有益的活动,为孩子的成长提供一个良好的环境.
我喜欢数学,我很害怕数学,我担心他们会不明白,不能学习.事实证明,在学习过程中遇到的困难.但足够的时间,我可以为标题的考前辅导班,老师讲时,他们不太了解,我发现缺乏内容和应用程序 - 老师不能说.观看一个频道会不会是这个问题,我真的想这样做,但是这是行不通的,只有要薄举例,慢慢地分析实例,总结出了解决问题的方法,做更多的事情,并逐渐成为使用.早在学校,我花了很多的时间做这样的计划可能会更加的最后一个繁忙的我挤时间预览,甚至放学后没有时间做练习,提出问题.老师在课堂上是如此之小,没有时间去巩固,数学的内容逐渐变得困难,我去的底部,然后我就干脆放下数学忙后最迫切的,然后拿出全面检讨.本次审查都面临着很大的困难,有时几个小时,仅使两个十几个问题,我坚持下来了,基本上找回丢失的内容.测试的方式来让自己感觉还是比较满意的结果.
初中学校数学课程分为两部分,代数和几何,略大于在中考中的比例,代数几何(我不知道你是哪里人,反正,在我们山东省,济南市,中考中的话).
代数以下几点:1,合理的操作,主要讲有理数的三个操作(加法,减法,乘法和除法,幂运算的数字和字母符号意识处方)这里要注意的,是不是受主学校的影响,看到的字母数字不会做的题目. 2,融合三层计算,注意符号意识培训的,有分解,乘法和正始可互换注意,类似的差异的两个正方形式和完美的方式被使用时,逆和变形. 3,方程将在一,二元,三元二次的解决方案和应用的四个方程,记住,方程的方法,解决问题的一种手段. 4,功能,标识一个函数,二次函数的逆函数的图像,请记住它们的特性,根据应用程序的条件.特别要注意的辅助功能,这是测试的重点和难点.
几何应用题可以用它来的问题主要表现在以下几点:1,识别各种平面图形和立体图形,你应该很熟悉. 2图形的平移,旋转,轴对称,检查你的空间想象能力做更多的问题. 3,全等和相似三角形,将会证明,要注意有一个完整的流程和严格的步骤,也证明三角形全等的五种方法和证明的四种方法,像一个等腰三角形,直角的三角形和金三角的性质,得到应用,这将是非常有帮助的证明问题. 4,四边形,把握好平行四边形,长方形,正方形,菱形,梯形的概念选择轻微它们之间的区别,在身体上大做文章的,要注意他们的判断和考试的性质,也以证明其所有权. 5,圆,我有没有优良的学校在这里,因为这里是不是我们的重点在考试中,但圆将是非常困难的,它的很多知识,它被打破了,圆的问题是形成由许多小点.
以上是我总结的初中数学知识虚线谢谢你的麻烦!
主要是指认真阅读数学课本。许多同学没有养成这个习惯,把课本当成练习册;也有一部分同学不知怎么阅读,这是他们学不好数学的主要原因之一。一般地,阅读可以分以下三个层次:
1.课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2.课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3.课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力,同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问
是指在学习过程中要善于发现和提出疑问,这是衡量一个学生学习是否有进步的重要标志之一。有经验的老师认为:能够发现和提出疑问的学生才更有希望获得学习的成功;反之,那种一问三不知,自己又提不出任何问题的学生,是无法学好数学的。那么,怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,不愿意动脑筋,不去思考,当然发现不了什么问题,也提不出疑问。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。
一、课本要“预、做、复”。每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
二、上课要“听、记、练”。把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过一些练习题加以巩固。数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。
三、作业要“思、问、集”。作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想:如,方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。
总之,学习数学要有方法、计划和合理的安排。新课授完后,有些同学就感到头痛,于是,东看看西翻翻,一天下来,不知 道自己学了什么。因此,每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力.