展开全部
解:
设长轴为a,则短轴b 满足: a^2 + b^2 = 2^2,b^2= a^2 - 4
设a^2 = T
则椭圆方程是: x^2/T + y^2/(T - 4) = 1
由于椭圆与 x + √3y + 4 = 0 有一个交点,所以 方程组联立只有一组解(x,y)。
x + √3y + 4 = 0
x = -(√3y + 4) 代入椭圆方程:
(√3y + 4)^2/T + y^2/(T - 4) = 1
(3y^2 + 8√3y + 16) * (T - 4) + y^2 T = T (T -4)
y^2 (3*(T - 4) + T ) + y 8√3(T - 4) + (16-T) (T - 4 ) = 0
y^2 (4T - 12) + y 8√3(T - 4) + (16 - T) (T - 4) = 0
判别式="b^2 - 4ac" =0 (是一元二次方程判别式,abc不是题目中含义)
所以:
64 * 3 (T - 4)^2 - 4 (4T - 12) * (16 -T) (T -4) = 0
4 * 3 (T -4)^2 - (T - 3) * 15 * (T - 4) = 0
显然 T - 4 = 0 是一个解(T=4)
如果 T - 4 ≠ 0,则:
12 ( T - 4) - (16 - T) ( T -3) = 0
12T - 48 + (T - 16 ) (T -3) = 0
12T - 48 + T^2 - 19T + 48 = 0
T^2 - 7T = 0
T=0 或 T=7
由于 T = 4, a=2,b=0,舍弃;
由于 T = 0, a=0 舍弃
所以 :T=7 , a=√7
所以长轴为2√7
祝您学习愉快
设长轴为a,则短轴b 满足: a^2 + b^2 = 2^2,b^2= a^2 - 4
设a^2 = T
则椭圆方程是: x^2/T + y^2/(T - 4) = 1
由于椭圆与 x + √3y + 4 = 0 有一个交点,所以 方程组联立只有一组解(x,y)。
x + √3y + 4 = 0
x = -(√3y + 4) 代入椭圆方程:
(√3y + 4)^2/T + y^2/(T - 4) = 1
(3y^2 + 8√3y + 16) * (T - 4) + y^2 T = T (T -4)
y^2 (3*(T - 4) + T ) + y 8√3(T - 4) + (16-T) (T - 4 ) = 0
y^2 (4T - 12) + y 8√3(T - 4) + (16 - T) (T - 4) = 0
判别式="b^2 - 4ac" =0 (是一元二次方程判别式,abc不是题目中含义)
所以:
64 * 3 (T - 4)^2 - 4 (4T - 12) * (16 -T) (T -4) = 0
4 * 3 (T -4)^2 - (T - 3) * 15 * (T - 4) = 0
显然 T - 4 = 0 是一个解(T=4)
如果 T - 4 ≠ 0,则:
12 ( T - 4) - (16 - T) ( T -3) = 0
12T - 48 + (T - 16 ) (T -3) = 0
12T - 48 + T^2 - 19T + 48 = 0
T^2 - 7T = 0
T=0 或 T=7
由于 T = 4, a=2,b=0,舍弃;
由于 T = 0, a=0 舍弃
所以 :T=7 , a=√7
所以长轴为2√7
祝您学习愉快
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询