求函数y=(x^4+x^2+5)/(x^2+1)^2的最大值与最小值
2个回答
展开全部
y=(x^4+x^2+5)/(x^4+2x^2+1)
=(x^4+2x^2+1-x^2+4)/(x^4+2x^2+1)
=1+(4-x^2)/(x^4+2x^2+1)
=1+(5-(x^2+1))/(x^2+1)^2
=1-1/(x^2+1)+5/(x^2+1)^2
令t=1/(x^2+1) ,0<t<=1
那么 y=5t^2-t+1
该函数是二次函数
对称轴为t=1/10 属于区间(0,1]
t=0时,y=1
t=1/10时, y=0.95 最小值
t=1时,y=5 最大值
所以y的值域是[0.95,5]
=(x^4+2x^2+1-x^2+4)/(x^4+2x^2+1)
=1+(4-x^2)/(x^4+2x^2+1)
=1+(5-(x^2+1))/(x^2+1)^2
=1-1/(x^2+1)+5/(x^2+1)^2
令t=1/(x^2+1) ,0<t<=1
那么 y=5t^2-t+1
该函数是二次函数
对称轴为t=1/10 属于区间(0,1]
t=0时,y=1
t=1/10时, y=0.95 最小值
t=1时,y=5 最大值
所以y的值域是[0.95,5]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询