z1+z2=a*cosB+b*cosA+i(a*sinB-b*sinA)
由余弦定理:
acosB=a(a*a+1*1-b*b)/2a=(a^2+1-b^2)/2
bcosA=(b^2+1-a^2)/2
由正弦定理:
sinB/b=sinC/1 ==> asinB=absinC
sinA/a=sinC/1 ==> bsinA=absinC
所以
z1+z2=acosB+bcosA+i(asinB-bsinA)
=(a^2+1-b^2+b^2+1-a^2)/2+i(absinC-absinC)
=1