、已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE。 求证:AC-AB=2BE
、已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE。求证:AC-AB=2BE...
、已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE。
求证:AC-AB=2BE 展开
求证:AC-AB=2BE 展开
3个回答
2010-08-27
展开全部
延长BE交AC于F,得证.........从角的关系得2倍角1加4倍角C为180度,则不难得出BCF为等腰三角形,而ABF为等腰三角形,AE为垂直平分线。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:延长BE交AC于M
∵BE⊥AE,
∴∠AEB=∠AEM=90°
在△ABE中,
∵∠1+∠3+∠AEB=180°,
∴∠3=90°-∠1
同理,∠4=90°-∠2
∵∠1=∠2,
∴∠3=∠4,
∴AB=AM
∵BE⊥AE,
∴BM=2BE,
∴AC-AB=AC-AM=CM,
∵∠4是△BCM的外角
∴∠4=∠5+∠C
∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5
∴3∠C=∠4+∠5=2∠5+∠C
∴∠5=∠C
∴CM=BM
∴AC-AB=BM=2BE
∵BE⊥AE,
∴∠AEB=∠AEM=90°
在△ABE中,
∵∠1+∠3+∠AEB=180°,
∴∠3=90°-∠1
同理,∠4=90°-∠2
∵∠1=∠2,
∴∠3=∠4,
∴AB=AM
∵BE⊥AE,
∴BM=2BE,
∴AC-AB=AC-AM=CM,
∵∠4是△BCM的外角
∴∠4=∠5+∠C
∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5
∴3∠C=∠4+∠5=2∠5+∠C
∴∠5=∠C
∴CM=BM
∴AC-AB=BM=2BE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:延长BE交AC于M
∵BE⊥AE,
∴∠AEB=∠AEM=90°
在△ABE中,
∵∠1+∠3+∠AEB=180°,
∴∠3=90°-∠1
同理,∠4=90°-∠2
∵∠1=∠2,
∴∠3=∠4,
∴AB=AM
∵BE⊥AE,
∴BM=2BE,
∴AC-AB=AC-AM=CM,
∵∠4是△BCM的外角
∴∠4=∠5+∠C
∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5
∴3∠C=∠4+∠5=2∠5+∠C
∴∠5=∠C
∴CM=BM
∴AC-AB=BM=2BE
∵BE⊥AE,
∴∠AEB=∠AEM=90°
在△ABE中,
∵∠1+∠3+∠AEB=180°,
∴∠3=90°-∠1
同理,∠4=90°-∠2
∵∠1=∠2,
∴∠3=∠4,
∴AB=AM
∵BE⊥AE,
∴BM=2BE,
∴AC-AB=AC-AM=CM,
∵∠4是△BCM的外角
∴∠4=∠5+∠C
∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5
∴3∠C=∠4+∠5=2∠5+∠C
∴∠5=∠C
∴CM=BM
∴AC-AB=BM=2BE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询