求1/(cosx+sinx)不定积分
1/(cosx+sinx)不定积分: √2arctanh【[tan(x / 2) - 1] / √2】+ C
令u = tan(x / 2),dx = 2du / (1+u²)
sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²)
∫ dx / (sinx + cosx)
= ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du
= 2∫ du / (-u² + 2u + 1)
= 2∫ du / [2 - (u - 1)²]
= 2∫ dy / (2 - y²),y=u - 1
= (1 / 2√2)ln|(y + √2) / (y - √2)| + C
= (1 / 2√2)ln|(u - 1 + √2) / (y - 1 - √2)| + C
= (1 / 2√2)ln|[tan(x / 2) - 1 + √2] / [tan(x / 2) - 1 - √2)| + C
= √2arctanh【[tan(x / 2) - 1] / √2】+ C
扩展资料
求不定积分的方法:
第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。
比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。
2024-11-22 广告
∴∫dx/(cosx+sinx)=(1/√2)∫sec(x-π/4)dx=(1/√2)ln丨sec(x-π/4)+tan(x-π/4)丨+C。供参考。
1/(sinx+cosx)In|sinx+cosx|+c
这是什么啊?答案?