求英译汉! 20
Thecontrolofthesizeandgrowthhabitwhensynthesizingazeoliteiscriticalwhetherthegoalisei...
The control of the size and growth habit when synthesizing a
zeolite is critical whether the goal is either a catalytic process [42]
or an adsorption application [43], but also when the target is the
use of zeolites as fillers for mixed matrix membranes [44] or when
crystallizing a continuous layer of zeolite [3]. The range of useful
particle sizes is wide, from colloidal zeolites, a few tens of nm in
size, to large crystals in the mm range. Colloidal zeolites can be used
as seeds for secondary seeded growth and growing larger crystals
or membranes, and are also interesting for catalytic and adsorptive
applications in view of their high external specific surface areas and
reduced diffusion path lengths. Nanozeolites may present inherent
problems of pressure drop and safe management due to the pos-
sibility of forming respirable aerosols, among others, which have
been overcome through the formation of hierarchical pore system
materials [45,46]. Recently, techniques for the growth of large sin-
gle crystals of various zeolites have been established [47,48]. Large
zeolitic crystals can be of interest for structure refining [49], char-
acterization [50], catalytic [48], electronic [51] and sensing [48]
applications, in situ reaction studies [52,53], and for the study of
chemical and physical processes difficult to observe on nanometric
or micrometric particles [52,54,55].
The growth habits of zeolites can be modified through templat-
ing using alkylammonium polycations. As has been demonstrated
for silicalite-1 [56,57], this is of particular interest when preferen-
tial orientation of zeolite channels with respect to crystal shape and
dimensions is a key issue, as in the case of silicalite-1 membranes
[58]. An alternative for crystal growth (habit and size) control
would use the same specific template while buffering the synthesis
medium with a different organic compound, as in the case of the
growth of dodecasil 3C in presence of amino acid histidine [59]. 展开
zeolite is critical whether the goal is either a catalytic process [42]
or an adsorption application [43], but also when the target is the
use of zeolites as fillers for mixed matrix membranes [44] or when
crystallizing a continuous layer of zeolite [3]. The range of useful
particle sizes is wide, from colloidal zeolites, a few tens of nm in
size, to large crystals in the mm range. Colloidal zeolites can be used
as seeds for secondary seeded growth and growing larger crystals
or membranes, and are also interesting for catalytic and adsorptive
applications in view of their high external specific surface areas and
reduced diffusion path lengths. Nanozeolites may present inherent
problems of pressure drop and safe management due to the pos-
sibility of forming respirable aerosols, among others, which have
been overcome through the formation of hierarchical pore system
materials [45,46]. Recently, techniques for the growth of large sin-
gle crystals of various zeolites have been established [47,48]. Large
zeolitic crystals can be of interest for structure refining [49], char-
acterization [50], catalytic [48], electronic [51] and sensing [48]
applications, in situ reaction studies [52,53], and for the study of
chemical and physical processes difficult to observe on nanometric
or micrometric particles [52,54,55].
The growth habits of zeolites can be modified through templat-
ing using alkylammonium polycations. As has been demonstrated
for silicalite-1 [56,57], this is of particular interest when preferen-
tial orientation of zeolite channels with respect to crystal shape and
dimensions is a key issue, as in the case of silicalite-1 membranes
[58]. An alternative for crystal growth (habit and size) control
would use the same specific template while buffering the synthesis
medium with a different organic compound, as in the case of the
growth of dodecasil 3C in presence of amino acid histidine [59]. 展开
3个回答
展开全部
控制的大小和生长习性当合成一种
至关重要的目标是否改性,或者是一种催化工艺[42]
或者是吸附应用[43),而且当目标的
用沸石分子筛为填料混合矩阵(44)或膜
结晶连续层沸石[3]。这个范围的有用
粒径广阔,从胶体沸石分子筛,数十海里
大小、大型晶体mm的范围。胶体沸石分子筛都可以使用
作为种子播种增长和二级不断增大的晶体
或膜、也是有趣的催化和吸附
应用在高外部表面积和
减少了传播路径长度。纳米分子筛可能固有的
问题的压降和安全管理的pos -
sibility研制的形成,其中,喷雾器
在通过形成层次孔隙系统
材料[45,46岁)。最近,技术发展大罪
gle水晶各种沸石分子筛已有48][47岁的。大型
zeolitic晶体可以对结构(49),炙星提炼
acterization(50)、催化(48),电子(51)和遥感(48)
应用、原位反应研究[m].北京:52,53],为研究
化学和物理过程难以观察在内部
52岁的粒子(或微调,55]54。
生长习性,可以通过templat改性沸石分子筛-
alkylammonium polycations时使用。作为已经被证实
为silicalite-1[56,57],这是特别感兴趣的preferen时
钛取向对沸石通道的晶体形状
一个关键问题是,像silicalite-1膜
(58)。另一种对晶体生长习性及大小()控制
会使用同一具体模板缓冲合成时
媒体与不同的有机化合物,如了
dodecasil生长在氨基酸3C产品
至关重要的目标是否改性,或者是一种催化工艺[42]
或者是吸附应用[43),而且当目标的
用沸石分子筛为填料混合矩阵(44)或膜
结晶连续层沸石[3]。这个范围的有用
粒径广阔,从胶体沸石分子筛,数十海里
大小、大型晶体mm的范围。胶体沸石分子筛都可以使用
作为种子播种增长和二级不断增大的晶体
或膜、也是有趣的催化和吸附
应用在高外部表面积和
减少了传播路径长度。纳米分子筛可能固有的
问题的压降和安全管理的pos -
sibility研制的形成,其中,喷雾器
在通过形成层次孔隙系统
材料[45,46岁)。最近,技术发展大罪
gle水晶各种沸石分子筛已有48][47岁的。大型
zeolitic晶体可以对结构(49),炙星提炼
acterization(50)、催化(48),电子(51)和遥感(48)
应用、原位反应研究[m].北京:52,53],为研究
化学和物理过程难以观察在内部
52岁的粒子(或微调,55]54。
生长习性,可以通过templat改性沸石分子筛-
alkylammonium polycations时使用。作为已经被证实
为silicalite-1[56,57],这是特别感兴趣的preferen时
钛取向对沸石通道的晶体形状
一个关键问题是,像silicalite-1膜
(58)。另一种对晶体生长习性及大小()控制
会使用同一具体模板缓冲合成时
媒体与不同的有机化合物,如了
dodecasil生长在氨基酸3C产品
展开全部
控制的大小和生长习性当合成一种
至关重要的目标是否改性,或者是一种催化工艺[42]
或者是吸附应用[43),而且当目标的
用沸石分子筛为填料混合矩阵(44)或膜
结晶连续层沸石[3]。这个范围的有用
粒径广阔,从胶体沸石分子筛,数十海里
大小、大型晶体mm的范围。胶体沸石分子筛都可以使用
作为种子播种增长和二级不断增大的晶体
或膜、也是有趣的催化和吸附
应用在高外部表面积和
减少了传播路径长度。纳米分子筛可能固有的
问题的压降和安全管理的pos -
sibility研制的形成,其中,喷雾器
超过...
至关重要的目标是否改性,或者是一种催化工艺[42]
或者是吸附应用[43),而且当目标的
用沸石分子筛为填料混合矩阵(44)或膜
结晶连续层沸石[3]。这个范围的有用
粒径广阔,从胶体沸石分子筛,数十海里
大小、大型晶体mm的范围。胶体沸石分子筛都可以使用
作为种子播种增长和二级不断增大的晶体
或膜、也是有趣的催化和吸附
应用在高外部表面积和
减少了传播路径长度。纳米分子筛可能固有的
问题的压降和安全管理的pos -
sibility研制的形成,其中,喷雾器
超过...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
谷歌翻译就搞定了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询