用那个什么全微分求,高等数学必采纳秒采纳,高等数学
3个回答
展开全部
用那个什么全微分求,高等数学必采纳秒采纳,高等数学
由原方程:
x^3dx-3xy^2dx+y^3dy-3x^2ydy=0
x^3dx+y^3dy-3xy^2dx-3x^2ydy=0
d[(1/4)x^4]+d[(1/4)y^4]-y^2d[(3/2)x^2]-x^2d[(3/2)y^2]=0
d[(1/4)x^4+(1/4)y^4]-{y^2d[(3/2)x^2]+x^2d[(3/2)y^2]}=0
d[(1/4)x^4+(1/4)y^4]-d[(3/2)x^2y^2]=0
d{[(1/4)x^4+(1/4)y^4]-(3/2)x^2y^2}=0
通解:
(1/4)x^4+(1/4)y^4-(3/2)x^2y^2=C
注:
xdy+ydx=d(xy)
由原方程:
x^3dx-3xy^2dx+y^3dy-3x^2ydy=0
x^3dx+y^3dy-3xy^2dx-3x^2ydy=0
d[(1/4)x^4]+d[(1/4)y^4]-y^2d[(3/2)x^2]-x^2d[(3/2)y^2]=0
d[(1/4)x^4+(1/4)y^4]-{y^2d[(3/2)x^2]+x^2d[(3/2)y^2]}=0
d[(1/4)x^4+(1/4)y^4]-d[(3/2)x^2y^2]=0
d{[(1/4)x^4+(1/4)y^4]-(3/2)x^2y^2}=0
通解:
(1/4)x^4+(1/4)y^4-(3/2)x^2y^2=C
注:
xdy+ydx=d(xy)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询