1个回答
展开全部
解:
sinC=sin(π-(A+B))=sin(A+B)
cos2C=cos2(π-(A+B))=cos2(A+B)
∴sinA(sinB+cosB)- sin(A+B)=0
sinAsinB+sinAcosB)- sinAcosB-cosAsinB=0
sinB(sinA-cosA)=0,又sinB≠0
∴sinA=cosA
∵A∈(0,π)
∴A= π/4
再由sinB+ cos2(A+B)=0
sinB+cos( π/2 +2B)=0
sinB-sin2B=0
cosB=- 1/2
∴B= π/3
又C=π-(A+B)=π-( π/3 + π/4 )= 5π/12
∴A= π/4 ,B= π/3 ,C= 5π/12 .
sinC=sin(π-(A+B))=sin(A+B)
cos2C=cos2(π-(A+B))=cos2(A+B)
∴sinA(sinB+cosB)- sin(A+B)=0
sinAsinB+sinAcosB)- sinAcosB-cosAsinB=0
sinB(sinA-cosA)=0,又sinB≠0
∴sinA=cosA
∵A∈(0,π)
∴A= π/4
再由sinB+ cos2(A+B)=0
sinB+cos( π/2 +2B)=0
sinB-sin2B=0
cosB=- 1/2
∴B= π/3
又C=π-(A+B)=π-( π/3 + π/4 )= 5π/12
∴A= π/4 ,B= π/3 ,C= 5π/12 .
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询