在三角形ABC中,sinA(sinB+cosB)-sinC=0,sinB+2cosC=0,求角A,B,C的大小

如题... 如题 展开
370116
高赞答主

2010-08-29 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
解:
sinC=sin(π-(A+B))=sin(A+B)
cos2C=cos2(π-(A+B))=cos2(A+B)
∴sinA(sinB+cosB)- sin(A+B)=0
sinAsinB+sinAcosB)- sinAcosB-cosAsinB=0
sinB(sinA-cosA)=0,又sinB≠0
∴sinA=cosA
∵A∈(0,π)
∴A= π/4
再由sinB+ cos2(A+B)=0
sinB+cos( π/2 +2B)=0
sinB-sin2B=0
cosB=- 1/2
∴B= π/3
又C=π-(A+B)=π-( π/3 + π/4 )= 5π/12
∴A= π/4 ,B= π/3 ,C= 5π/12 .
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式