
一道高一数学选择题
若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1则下列说法一定正确的是:Af(x)为奇函数Bf(x)为偶函数Cf(x)+...
若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1则下列说法一定正确的是:
A f(x)为奇函数 B f(x)为偶函数 C f(x)+1为奇函数 D f(x)+1为偶函数
要有过程 展开
A f(x)为奇函数 B f(x)为偶函数 C f(x)+1为奇函数 D f(x)+1为偶函数
要有过程 展开
2个回答
展开全部
令x2 = 0
=> f(x1) = f(x1)+f(0)+1
=> f(0) = -1 => f(x)不是奇函数,可排除A
令x2 = -x1
=> f(0) = -1 = f(x1)+f(-x1)+1
=>两边都加1得
0 = [f(x1)+1] + [f(-x1)+1]
=> f(x1)+1 = -[f(-x1)+1]
所以f(x)+1为奇函数,答案选C
=> f(x1) = f(x1)+f(0)+1
=> f(0) = -1 => f(x)不是奇函数,可排除A
令x2 = -x1
=> f(0) = -1 = f(x1)+f(-x1)+1
=>两边都加1得
0 = [f(x1)+1] + [f(-x1)+1]
=> f(x1)+1 = -[f(-x1)+1]
所以f(x)+1为奇函数,答案选C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询