1个回答
展开全部
∵an=1/[n(n+2)]=[(1/n) -1/(n+2)]/2 (裂项相消法)
∴Sn=[1-(1/3)+(1/2)-(1/4)+(1/3)-(1/5)+…+(1/n) -1/(n+2)]/2
=(3/2)-(2n+3)/(n+1)(n+2).
这叫裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
∴Sn=[1-(1/3)+(1/2)-(1/4)+(1/3)-(1/5)+…+(1/n) -1/(n+2)]/2
=(3/2)-(2n+3)/(n+1)(n+2).
这叫裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询