高中数学导数题
已知函数F(x)=(x^3+3x^2+ax+b)e^-x1.若a=b=-3求f(X)的单调区间2.若f(x)在(-∞,α)和(2,β)上单调增加,在(2,α)和(β,∞)...
已知函数F(x)=(x^3+3x^2+ax+b)e^-x
1.若a=b= -3 求f(X)的单调区间
2.若f(x)在(-∞,α )和(2,β)上单调增加,在(2,α )和(β,∞)上单调递减 证明β - α>6 展开
1.若a=b= -3 求f(X)的单调区间
2.若f(x)在(-∞,α )和(2,β)上单调增加,在(2,α )和(β,∞)上单调递减 证明β - α>6 展开
展开全部
求导 F'(x)=[-x^3+(6-a)x+a-b]e^-x
当a=b=-3时 F'(x)=(-x^3+9x)e^-x 令F'(x)=0 解得X=0或x=3或x=-3
经判断 (-∞,-3)和 (0,3)单调递增 (-3,0)和(3,+∞)单调递减
第二个问等我给你码字
当a=b=-3时 F'(x)=(-x^3+9x)e^-x 令F'(x)=0 解得X=0或x=3或x=-3
经判断 (-∞,-3)和 (0,3)单调递增 (-3,0)和(3,+∞)单调递减
第二个问等我给你码字
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询