已知数列{an}的前n项和为Sn,且满足a1=1/2,an=-2Sn.S(n -1) (n≥2)
求证s1^2+s2^2+……+sn^2<=1/2+1/(4n)求证s1^2+s2^2+……+sn^2<=1/2-1/(4n)上面错了...
求证s1^2+s2^2+……+sn^2<=1/2+1/(4n)
求证s1^2+s2^2+……+sn^2<=1/2-1/(4n)
上面错了 展开
求证s1^2+s2^2+……+sn^2<=1/2-1/(4n)
上面错了 展开
1个回答
展开全部
an=-2Sn*S(n-1)
Sn-S(n-1)=-2Sn*S(n-1)
1/S(n-1)-1/Sn=-2
又因为1/S1=1/a1=2
所以{1/Sn}是以2为首项,2为公差的等差数列
1/Sn=2n
Sn=1/2n
①当n=1时,S1^2=1/4=1/2-1/4=1/4,成立
②当n>=2时,S1^2+S2^2+...+Sn^2=1/4*(1+1/2^2+1/3^2+...+1/n^2)
<1/4*[1+1/(1*2)+1/(2*3)+...+1/(n-1)n]
=1/4*[1+(1-1/2)+(1/2-1/3)+...+(1/(n-1)-1/n)]
=1/4*(2-1/n)
=1/2-1/4n
所以s1^2+s2^2+……+sn^2<=1/2-1/(4n)
Sn-S(n-1)=-2Sn*S(n-1)
1/S(n-1)-1/Sn=-2
又因为1/S1=1/a1=2
所以{1/Sn}是以2为首项,2为公差的等差数列
1/Sn=2n
Sn=1/2n
①当n=1时,S1^2=1/4=1/2-1/4=1/4,成立
②当n>=2时,S1^2+S2^2+...+Sn^2=1/4*(1+1/2^2+1/3^2+...+1/n^2)
<1/4*[1+1/(1*2)+1/(2*3)+...+1/(n-1)n]
=1/4*[1+(1-1/2)+(1/2-1/3)+...+(1/(n-1)-1/n)]
=1/4*(2-1/n)
=1/2-1/4n
所以s1^2+s2^2+……+sn^2<=1/2-1/(4n)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询