第七题 复变函数解析性那一块的题
2个回答
2014-05-09
展开全部
|f(z)|=√(u²+v²),
∂|f(z)|/∂x=[1/√(u²+v²)](u∂u/∂x+v∂v/∂x)
∂|f(z)|/∂y=[1/√(u²+v²)](u∂u/∂y+v∂v/∂y)
(∂|f(z)|/∂x)²=[1/(u²+v²)][u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)]
(∂|f(z)|/∂y)²=[1/(u²+v²)][u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)(∂v/∂y)]
(∂|f(z)|/∂x)²+(∂|f(z)|/∂y)²=[1/(u²+v²)]
[u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)(∂v/∂y)] 根据柯西黎曼方程:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x,得:
u²
(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)
(∂v/∂y)=u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂v/∂x)²+v²(∂u
/∂x)²-2uv(∂u/∂x)(∂v/∂x)=(u²+v²)[(∂u/∂x)²+(∂v/∂x)²]
所以(∂|f(z)|/∂x)²+(∂|f(z)|/∂y)²=(∂u/∂x)²+(∂v/∂x)²=|f‘(z)|²(注意到f’(z)=∂u/∂x+i∂v/∂x)
∂|f(z)|/∂x=[1/√(u²+v²)](u∂u/∂x+v∂v/∂x)
∂|f(z)|/∂y=[1/√(u²+v²)](u∂u/∂y+v∂v/∂y)
(∂|f(z)|/∂x)²=[1/(u²+v²)][u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)]
(∂|f(z)|/∂y)²=[1/(u²+v²)][u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)(∂v/∂y)]
(∂|f(z)|/∂x)²+(∂|f(z)|/∂y)²=[1/(u²+v²)]
[u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)(∂v/∂y)] 根据柯西黎曼方程:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x,得:
u²
(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)
(∂v/∂y)=u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂v/∂x)²+v²(∂u
/∂x)²-2uv(∂u/∂x)(∂v/∂x)=(u²+v²)[(∂u/∂x)²+(∂v/∂x)²]
所以(∂|f(z)|/∂x)²+(∂|f(z)|/∂y)²=(∂u/∂x)²+(∂v/∂x)²=|f‘(z)|²(注意到f’(z)=∂u/∂x+i∂v/∂x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |