第七题 复变函数解析性那一块的题

匿名用户
2014-05-09
展开全部
|f(z)|=√(u²+v²),
∂|f(z)|/∂x=[1/√(u²+v²)](u∂u/∂x+v∂v/∂x)
∂|f(z)|/∂y=[1/√(u²+v²)](u∂u/∂y+v∂v/∂y)
(∂|f(z)|/∂x)²=[1/(u²+v²)][u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)]
(∂|f(z)|/∂y)²=[1/(u²+v²)][u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)(∂v/∂y)]
(∂|f(z)|/∂x)²+(∂|f(z)|/∂y)²=[1/(u²+v²)]

[u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)(∂v/∂y)] 根据柯西黎曼方程:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x,得:

(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂u/∂y)²+v²(∂v/∂y)²+2uv(∂u/∂y)
(∂v/∂y)=u²(∂u/∂x)²+v²(∂v/∂x)²+2uv(∂u/∂x)(∂v/∂x)+u²(∂v/∂x)²+v²(∂u
/∂x)²-2uv(∂u/∂x)(∂v/∂x)=(u²+v²)[(∂u/∂x)²+(∂v/∂x)²]
所以(∂|f(z)|/∂x)²+(∂|f(z)|/∂y)²=(∂u/∂x)²+(∂v/∂x)²=|f‘(z)|²(注意到f’(z)=∂u/∂x+i∂v/∂x)
更多追问追答
追问

指间的黑色琴键
2014-05-09
知道答主
回答量:13
采纳率:0%
帮助的人:1.8万
展开全部
我等下把答案复制过来
追问
谢谢
快点啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式