如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE

请尽快回答!!... 请尽快回答!! 展开
wendyhx
2014-05-16 · TA获得超过6725个赞
知道大有可为答主
回答量:3151
采纳率:91%
帮助的人:2108万
展开全部
如图,延长AE到F,使EF=AE,连接DF。
在△ACE和△FDE中,
AE=EF,∠AEC=∠DEF,CE=DE
∴△ACE≌△FDE(SAS)
∴DF=AC=BD,∠F=∠FAC,∠C=∠FDC
∵AC=CD
∴∠CAD=∠ADC
∵∠ADB=∠C+∠CAD=∠FDC+∠ADC=ADF
在△ABD与△AFD中
AD=AD,∠ADB=∠ADF,BD=DF
∴△ABD≌△AFD(SAS)
∴∠BAD=∠FAD,
即AD平分角BAE。
追问
为什么一开始就能得到∠AEC=∠DEF呢?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式