高一数学!!!!!!!!!!急求解!!!!!要过程
已知a=(cosx,sinx),|b|=1,且a与b满足|ka+b|=根号3|a-kb|(k>0).(1)用k表示a.与b的数量积,并求a与b数量积的最小值(2)若0<=...
已知a=(cosx,sinx),|b|=1,且a与b满足|ka+b|=根号3|a-kb|(k>0).
(1)用k表示a.与b的数量积,并求a与b数量积的最小值
(2)若0<=x<=π,b=(1/2,(根号3)/2),求x的值,使a与b的数量积最大 展开
(1)用k表示a.与b的数量积,并求a与b数量积的最小值
(2)若0<=x<=π,b=(1/2,(根号3)/2),求x的值,使a与b的数量积最大 展开
展开全部
(1)因为 |ka+b|=√3*|a-kb|
两边平方得:k^2+1+2*k*a•b=3*(1+k^2-2*k*a•b)
解得:a•b=(k^2+1)/(4*k)
因为 k^2+1>=2*k 故a•b>=1/2 即最小为1/2
(2)因为b=(1/2,√3/2)
故a•b=1/2cosx+√3/2sinx=sin(x+π/6)
因为0<=x<=π 故π/6<=x+π/6<=7π/6
-1/2<=sin(x+π/6)<=1
故a•b最大为1时x=π/3
两边平方得:k^2+1+2*k*a•b=3*(1+k^2-2*k*a•b)
解得:a•b=(k^2+1)/(4*k)
因为 k^2+1>=2*k 故a•b>=1/2 即最小为1/2
(2)因为b=(1/2,√3/2)
故a•b=1/2cosx+√3/2sinx=sin(x+π/6)
因为0<=x<=π 故π/6<=x+π/6<=7π/6
-1/2<=sin(x+π/6)<=1
故a•b最大为1时x=π/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询