设函数f(x)=x^2+ax-lnx 令g(x)=f(x)/e^x,若函数g(x)在区间(0,1]
设函数f(x)=x^2+ax-lnx令g(x)=f(x)/e^x,若函数g(x)在区间(0,1]上是减函数求a的取值范围...
设函数f(x)=x^2+ax-lnx 令g(x)=f(x)/e^x,若函数g(x)在区间(0,1]上是减函数 求a的取值范围
展开
2个回答
展开全部
g(x)在区间(0,1]上是减函数 ,
<==>g'(x)=[f'(x)-f(x)]/e^x<=0,e^x>0,
<==>f'(x)-f(x)=2x+a-1/x-x^2-ax+lnx<=0,①
x=1时①成立,
0<x<1时①变为a<=(x^2-2x+1/x-lnx)/(1-x),记为h(x),
h(1-)→-(2x-2-1/x^2-1/x)→2,
∴a<=2;
反过来,易知,lnx<=x-1,
a<=2时①左=a(1-x)+2x+lnx-x^2-1/x
<=2(1-x)+2x+x-1-x^2-1/x
=1+x-x^2-1/x
=[x(1+x)-(x^3+1)]/x
=(x+1)[x-(x^2-x+1)]/x
=-[(x+1)(x-1)^2]/x<=0,
即①成立,
∴a的取值范围是(-∞,2].
<==>g'(x)=[f'(x)-f(x)]/e^x<=0,e^x>0,
<==>f'(x)-f(x)=2x+a-1/x-x^2-ax+lnx<=0,①
x=1时①成立,
0<x<1时①变为a<=(x^2-2x+1/x-lnx)/(1-x),记为h(x),
h(1-)→-(2x-2-1/x^2-1/x)→2,
∴a<=2;
反过来,易知,lnx<=x-1,
a<=2时①左=a(1-x)+2x+lnx-x^2-1/x
<=2(1-x)+2x+x-1-x^2-1/x
=1+x-x^2-1/x
=[x(1+x)-(x^3+1)]/x
=(x+1)[x-(x^2-x+1)]/x
=-[(x+1)(x-1)^2]/x<=0,
即①成立,
∴a的取值范围是(-∞,2].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询