设an的公比不为一的等比数列,其前n项合为sn,且a5,a3,a4成等差数列
2013-12-10
展开全部
解:(1)数列{an}是公比不为1的等比数列且a5,a3,a4成等差数列,则2a3=a4+a5,即q^2+q-2=0,解得q=1(舍)或q=-2(2)S(k+2)+S(k+1)=[a1(1-q^(k+2)]/(1-q)+[a1(1-q^(k+1)]/(1-q)=[a1/(1-q)][2-q^(k+2)-q^(k+1)] =[a1/(1-q)][2-q^k(q^2+q)]=[a1/(1-q)][2-2q^k]Sk=[a1/(1-q)][1-q^k故S(k+2)+S(k+1)= 2Sk即对任意k(正数),s(k+2),sk,s(k+1)成等差数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询