在高等数学中,求幂级数的和函数的一般步骤是什么?
1个回答
2014-01-10
展开全部
通常,首先求出幂级数的收敛半径,收敛区间
如果幂级数有n、(n+1)等系数时,需要先将级数逐项积分,约掉这些系数,就可能化为几何级数了,然后求其和。当然,与积分对应的,一定记得将来对这个级数的和再求导数。
同理,如果幂级数有 1/n、1/(n+1)等系数时,需要先将级数逐项求导,也是为了约掉这些系数,化为几何级数,然后求其和。只是将来对这个级数的和再求积分。
总之,有一次求导,将来就要对应一次积分,反之也一样。因为我们可以把求导和积分看成逆运算,这样做的目的是要将级数还原。
如果幂级数有n、(n+1)等系数时,需要先将级数逐项积分,约掉这些系数,就可能化为几何级数了,然后求其和。当然,与积分对应的,一定记得将来对这个级数的和再求导数。
同理,如果幂级数有 1/n、1/(n+1)等系数时,需要先将级数逐项求导,也是为了约掉这些系数,化为几何级数,然后求其和。只是将来对这个级数的和再求积分。
总之,有一次求导,将来就要对应一次积分,反之也一样。因为我们可以把求导和积分看成逆运算,这样做的目的是要将级数还原。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |