几道离散数学的问题 10
{4,3}U∅和{3,4}这两个集合相等么,答案说不相等,但我觉得相等,求解。A={1,2,3,4},P(A)A的幂集)上规定二元系如下(R={<s,t>|s...
{4,3}U∅和{3,4}这两个集合相等么,答案说不相等,但我觉得相等,求解。
A={1,2,3,4},P(A) A 的幂集)上规定二元系如下 ( R = {< s, t >| s, t ∈ p ( A) ∧ (| s |=| t |} 则P(A)/ R=( )A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{∅},{2},{2,3},{{2,3,4}},{A}}
答案是D……但是我没懂这答案是什么意思,商集的定义不是A/R={[x]R|x∈A}么……怎么感觉和D一点都不像?
“虽然你努力了,但还是失败了”符号化答案为什么是P ∧ Q 不是 P→Q?
A1∧A2∧…AN=>B 则A1∧A2∧…AN为B的前件这句话为什么不对?而且条件成立是当且仅当A1∧A2∧…AN∧B<=>F 还是当且仅当A1∧A2∧…AN∧否B<=>F?我觉得是后者答案是前者求解释……
设f是A到A的满射,且,证明f=IA
之前打的序号没有了……是五道题……
第一行是第一题,2-5行是第二题,“虽然”这一行是第三题,下面两行是第四题,最后一行是第五题…… 展开
A={1,2,3,4},P(A) A 的幂集)上规定二元系如下 ( R = {< s, t >| s, t ∈ p ( A) ∧ (| s |=| t |} 则P(A)/ R=( )A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{∅},{2},{2,3},{{2,3,4}},{A}}
答案是D……但是我没懂这答案是什么意思,商集的定义不是A/R={[x]R|x∈A}么……怎么感觉和D一点都不像?
“虽然你努力了,但还是失败了”符号化答案为什么是P ∧ Q 不是 P→Q?
A1∧A2∧…AN=>B 则A1∧A2∧…AN为B的前件这句话为什么不对?而且条件成立是当且仅当A1∧A2∧…AN∧B<=>F 还是当且仅当A1∧A2∧…AN∧否B<=>F?我觉得是后者答案是前者求解释……
设f是A到A的满射,且,证明f=IA
之前打的序号没有了……是五道题……
第一行是第一题,2-5行是第二题,“虽然”这一行是第三题,下面两行是第四题,最后一行是第五题…… 展开
2个回答
展开全部
证明实数好点
把实数化为无限小数的形式
用反证法,假设某人声称自己找到了一个整数到实数的单射,并给出了一个表
那么我们构建这样一个小数
整数部位是0
小数部位我们定义:小数点后第一位与他所给的数表的第一位不同,小数点后第二位与他所给的数表的第二位不同,以此类推。
这样就构造出了一个不在他的表上的数(假设那个人说这是他表上的第5421358个元素,你可以说:“不对,这个数的第5421358位和你那个数不同”),所以证明了实数是不可数的,然后有理数是可数的,所以无理数是不可数的....
把实数化为无限小数的形式
用反证法,假设某人声称自己找到了一个整数到实数的单射,并给出了一个表
那么我们构建这样一个小数
整数部位是0
小数部位我们定义:小数点后第一位与他所给的数表的第一位不同,小数点后第二位与他所给的数表的第二位不同,以此类推。
这样就构造出了一个不在他的表上的数(假设那个人说这是他表上的第5421358个元素,你可以说:“不对,这个数的第5421358位和你那个数不同”),所以证明了实数是不可数的,然后有理数是可数的,所以无理数是不可数的....
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询