设{an}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{an}的通项公式;(2)求数

列{(2n+1)an}的前n项和Sn。... 列{(2n+1)an}的前n项和Sn。 展开
 我来答
tony罗腾
2014-05-24 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293880
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
(Ⅰ)∵设{an}是公比为正数的等比数列
∴设其公比为q,q>0
∵a3=a2+4,a1=2
∴2×q2=2×q+4 解得q=2或q=-1
∵q>0
∴q=2
∴{an}的通项公式为an=2×2n-1=2n
(Ⅱ)∵{bn}是首项为1,公差为2的等差数列
∴bn=1+(n-1)×2=2n-1
∴数列{an+bn}的前n项和Sn=
2(1-2n)
1-2
+
n(1+2n-1)
2
=2n+1-2+n2=2n+1+n2-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式