如图,△ABC是圆O的内接三角形,AB是直径,∠ABC=45°,点M在边AC上,点N在边BC上,△MCN与△MPN关于直线

如图,△ABC是圆O的内接三角形,AB是直径,∠ABC=45°,点M在边AC上,点N在边BC上,△MCN与△MPN关于直线MN对称,P是AB上的点.(1)当点P是边AB的... 如图,△ABC是圆O的内接三角形,AB是直径,∠ABC=45°,点M在边AC上,点N在边BC上,△MCN与△MPN关于直线MN对称,P是AB上的点.(1)当点P是边AB的中点时,求证:PAPB=CMCN;(2)当点P不是边AB的中点时,PAPB=CMCN是否仍然成立?请证明你的结论. 展开
 我来答
施之桃RO
2014-12-28 · 超过62用户采纳过TA的回答
知道答主
回答量:117
采纳率:0%
帮助的人:141万
展开全部
(1)证明:连接CP,依据题意得折痕MN⊥CP.
∵AC=BC,AP=BP,
∴CP⊥AB.
∴MN∥AB,
CM
CN
AC
BC
=1

PA
PB
CM
CN



(2)解:当点P不是斜边AB的中点时,
PA
PB
CM
CN
仍然成立.
证明如下:
连接CP,则MN⊥CP.作PE⊥AC于E.
∵∠ACB=90°,
∴PE∥BC,
PA
PB
AE
EC

又AC=BC,∠A=∠B=45°,∠APE=∠B=45°,
∴AE=PE.
∵∠MCN=90°,CP⊥MN,
∴∠ECP=∠MNC,
∴Rt△MCN∽Rt△PEC,
CM
PE
CN
EC

CM
CN
PE
EC
AE
EC

PA
PB
CM
CN
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式