已知函数f(x)=ax+x2-xlna(a>1).(Ⅰ)试讨论函数f(x)的单调性;(Ⅱ)若函数y=|f(x)-t|-1有三
已知函数f(x)=ax+x2-xlna(a>1).(Ⅰ)试讨论函数f(x)的单调性;(Ⅱ)若函数y=|f(x)-t|-1有三个零点,试求t的值;(Ⅲ)若存在x1,x2∈[...
已知函数f(x)=ax+x2-xlna(a>1).(Ⅰ)试讨论函数f(x)的单调性;(Ⅱ)若函数y=|f(x)-t|-1有三个零点,试求t的值;(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
展开
展开全部
(Ⅰ)f'(x)=axlna+2x-lna=2x+(ax-1)lna.
∵f'(0)=0,且a>1.
当x>0时,lna>0,ax-1>0?f'(x)>0,
故函数f(x)在(0,+∞)上单调递增;
当x<0时,lna>0,ax-1<0?f'(x)<0.
故函数f(x)在(0,+∞)上单调递减.
(Ⅱ)当a>1时,由(Ⅰ)可知:f(x)在x=0处取得最小值,又函数y=|f(x)-t|-1有三个零点,所以方程f(x)=t±1有三个根,
而t+1>t-1,所以t-1=(f(x))min=f(0)=1,由此可解得:t=2.
(Ⅲ)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
因此当x∈[-1,1]时,有:|(f(x))max-(f(x))min|=(f(x))max-(f(x))min≥e-1.
又由(Ⅰ)知:f(x)在[-1,0]上单调递减,在[0,1]上单调递增,
故当x∈[-1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(-1),f(1)},
而f(1)-f(-1)=(a+1-lna)-(
+1+lna)=a-
-2lna.
记g(t)=t-
-2lnt (t≥1),因为g(t)′=1+
-
=(
-1)2≥0(当t=1时取等号)
因此g(t)=t-
-2lnt在t∈[1,+∞)上单调递增,而g(1)=0,故当t>1时,g(t)>0;即当a>1时,f(1)>f(-1)
由f(1)-f(0)≥e-1?a-lna≥e-1?a≥e,综上所述,所求a的取值范围为[e,+∞).
∵f'(0)=0,且a>1.
当x>0时,lna>0,ax-1>0?f'(x)>0,
故函数f(x)在(0,+∞)上单调递增;
当x<0时,lna>0,ax-1<0?f'(x)<0.
故函数f(x)在(0,+∞)上单调递减.
(Ⅱ)当a>1时,由(Ⅰ)可知:f(x)在x=0处取得最小值,又函数y=|f(x)-t|-1有三个零点,所以方程f(x)=t±1有三个根,
而t+1>t-1,所以t-1=(f(x))min=f(0)=1,由此可解得:t=2.
(Ⅲ)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
因此当x∈[-1,1]时,有:|(f(x))max-(f(x))min|=(f(x))max-(f(x))min≥e-1.
又由(Ⅰ)知:f(x)在[-1,0]上单调递减,在[0,1]上单调递增,
故当x∈[-1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(-1),f(1)},
而f(1)-f(-1)=(a+1-lna)-(
1 |
a |
1 |
a |
记g(t)=t-
1 |
t |
1 |
t2 |
2 |
t |
1 |
t |
因此g(t)=t-
1 |
t |
由f(1)-f(0)≥e-1?a-lna≥e-1?a≥e,综上所述,所求a的取值范围为[e,+∞).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询