(2010?武汉)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延

(2010?武汉)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦... (2010?武汉)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长. 展开
 我来答
霜全里1
推荐于2017-12-16 · 超过66用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:132万
展开全部
(1)证明:连接OC,作OD⊥PB于D点.
∵⊙O与PA相切于点C,
∴OC⊥PA.
∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,
∴OD=OC.
∴直线PB与⊙O相切;

(2)解:设PO交⊙O于F,连接CF.
∵OC=3,PC=4,∴PO=5,PE=8.
∵⊙O与PA相切于点C,
∴∠PCF=∠E.
又∵∠CPF=∠EPC,
∴△PCF∽△PEC,
∴CF:CE=PC:PE=4:8=1:2.
∵EF是直径,
∴∠ECF=90°.
设CF=x,则EC=2x.
则x2+(2x)2=62
解得x=
6
5
5

则EC=2x=
12
5
5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式