如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.(1)求证:AD=AE;(2)如图2,点P在
如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求...
如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:DF?EF=2AF;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.
展开
1个回答
展开全部
解答:(1)证明:∵tanB=2,
∴AE=2BE;
∵E是BC中点,
∴BC=2BE,
即AE=BC;
又∵四边形ABCD是平行四边形,则AD=BC=AE;
(2)证明:作AG⊥AF,交DP于G;(如图2)
∵AD∥BC,
∴∠ADG=∠DPC;
∵∠AEP=∠EFP=90°,
∴∠PEF+∠EPF=∠PEF+∠AEF=90°,
即∠ADG=∠AEF=∠FPE;
又∵AE=AD,∠FAE=∠GAD=90°-∠EAG,
∴△AFE≌△AGD,
∴AF=AG,即△AFG是等腰直角三角形,且EF=DG;
∴FG=
AF,且DF=DG+GF=EF+FG,
故DF-EF=
AF;
(3)解:如图3,
①当EP≤2BC时,DF+EF=
AF,解法同(2).
②当EP>2BC时,EF-DF=
AF.
∴AE=2BE;
∵E是BC中点,
∴BC=2BE,
即AE=BC;
又∵四边形ABCD是平行四边形,则AD=BC=AE;
(2)证明:作AG⊥AF,交DP于G;(如图2)
∵AD∥BC,
∴∠ADG=∠DPC;
∵∠AEP=∠EFP=90°,
∴∠PEF+∠EPF=∠PEF+∠AEF=90°,
即∠ADG=∠AEF=∠FPE;
又∵AE=AD,∠FAE=∠GAD=90°-∠EAG,
∴△AFE≌△AGD,
∴AF=AG,即△AFG是等腰直角三角形,且EF=DG;
∴FG=
2 |
故DF-EF=
2 |
(3)解:如图3,
①当EP≤2BC时,DF+EF=
2 |
②当EP>2BC时,EF-DF=
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询