设数列{an}是等差数列,bn=(1/2)an次幂又b1+b2+b3=21/8,b1b2b3=1/8,求通项an

shsycxj
2010-08-30 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2175
采纳率:0%
帮助的人:1096万
展开全部
∵bn=(1/2)^an ∴b(n+1)/bn=(1/2)^[a(n+1)-an]
∵{an}是等差数列 ∴a(n+1)-an=d=常数 ∴{bn}为等比数列
∴b1+b2+b3=b1(1+q+q^2)=21/8 ……(1) b1b2b3=(b1q)^3=1/8 ……(2)
由(1)、(2)解得:b1=2,d=1/4或b1=1/8,d=4
∴bn=2*(1/4)^(n-1) 或 bn=1/8*4^(n-1)
∵bn=(1/2)^an ∴an=-log2bn
∴an=-log2[2*(1/4)^(n-1)]=-1+2(n-1)=2n-3
或an=-log2[1/8*4^(n-1)]=3-2(n-1)=-2n+5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式