设数列{an}是等差数列,bn=(1/2)an次幂又b1+b2+b3=21/8,b1b2b3=1/8,求通项an
1个回答
展开全部
∵bn=(1/2)^an ∴b(n+1)/bn=(1/2)^[a(n+1)-an]
∵{an}是等差数列 ∴a(n+1)-an=d=常数 ∴{bn}为等比数列
∴b1+b2+b3=b1(1+q+q^2)=21/8 ……(1) b1b2b3=(b1q)^3=1/8 ……(2)
由(1)、(2)解得:b1=2,d=1/4或b1=1/8,d=4
∴bn=2*(1/4)^(n-1) 或 bn=1/8*4^(n-1)
∵bn=(1/2)^an ∴an=-log2bn
∴an=-log2[2*(1/4)^(n-1)]=-1+2(n-1)=2n-3
或an=-log2[1/8*4^(n-1)]=3-2(n-1)=-2n+5
∵{an}是等差数列 ∴a(n+1)-an=d=常数 ∴{bn}为等比数列
∴b1+b2+b3=b1(1+q+q^2)=21/8 ……(1) b1b2b3=(b1q)^3=1/8 ……(2)
由(1)、(2)解得:b1=2,d=1/4或b1=1/8,d=4
∴bn=2*(1/4)^(n-1) 或 bn=1/8*4^(n-1)
∵bn=(1/2)^an ∴an=-log2bn
∴an=-log2[2*(1/4)^(n-1)]=-1+2(n-1)=2n-3
或an=-log2[1/8*4^(n-1)]=3-2(n-1)=-2n+5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询