(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为BC上一动点,求证:PA=PB+PC.下面给出一种证明方法
(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为BC上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法...
(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为BC上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为BC上一动点,求证:PA=PC+2PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为BC上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.
展开
1个回答
展开全部
证明:(1)延长BP至E,使PE=PC,
连接CE.∵∠1=∠2=60°,∠3=∠4=60°,
∴∠CPE=60°,
∴△PCE是等边三角形,
∴CE=PC,∠E=∠3=60°;
又∵∠EBC=∠PAC,
∴△BEC≌△APC,
∴PA=BE=PB+PC.(2分)
(2)过点B作BE⊥PB交PA于E.
∵∠1+∠2=∠2+∠3=90°
∴∠1=∠3,
又∵∠APB=45°,
∴BP=BE,∴PE=
PB;
又∵AB=BC,
∴△ABE≌△CBP,
∴PC=AE.
∴PA=AE+PE=PC+
PB.(4分)
(3)答:PA=PC+
PB;
证明:在AP上截取AQ=PC,
连接BQ,∵∠BAP=∠BCP,AB=BC,
∴△ABQ≌△CBP,
∴BQ=BP.
又∵∠APB=30°,
∴PQ=
PB
∴PA=PQ+AQ=
PB+PC(7分)
连接CE.∵∠1=∠2=60°,∠3=∠4=60°,
∴∠CPE=60°,
∴△PCE是等边三角形,
∴CE=PC,∠E=∠3=60°;
又∵∠EBC=∠PAC,
∴△BEC≌△APC,
∴PA=BE=PB+PC.(2分)
(2)过点B作BE⊥PB交PA于E.
∵∠1+∠2=∠2+∠3=90°
∴∠1=∠3,
又∵∠APB=45°,
∴BP=BE,∴PE=
2 |
又∵AB=BC,
∴△ABE≌△CBP,
∴PC=AE.
∴PA=AE+PE=PC+
2 |
(3)答:PA=PC+
3 |
证明:在AP上截取AQ=PC,
连接BQ,∵∠BAP=∠BCP,AB=BC,
∴△ABQ≌△CBP,
∴BQ=BP.
又∵∠APB=30°,
∴PQ=
3 |
∴PA=PQ+AQ=
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询