3个回答
展开全部
y'=e^-(sin1/x)^2 *2*sin1/x*cos1/x*1/x^2
y'=(scs(ln(1+x^2))^2*1/(1+x^2)*2x
y'=(scs(ln(1+x^2))^2*1/(1+x^2)*2x
追问
没了?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.y=e^[-sin² (1/x)] y'=e^[-sin² (1/x)] [-2sin(1/x)cos(1/x)(-1/x²)]=-(1/x²)sin(2/x) e^[-sin² (1/x)]
2.y=tan [ln(1+x²)] y'=sec²[ln(1+x²)] [2x/(1+x²)] = 2xsec²[ln(1+x²)]/(1+x²)
3.y=x^(x^2) lny =x^2 lnx d(lny)/dx = y'/y = 2xlnx+x y'=x(2lnx + 1)x^(x^2) = (2lnx + 1)x^(x²+1)
4. cos(xy) = x² y² 求y的dy:
-sin(xy) (y+xy') = 2xy²+x² (2yy') -ysin(xy)-xy'sin(xy) = 2xy² + 2x²yy'
y'[xsin(xy)+2x²y] = -y[sin(xy) + 2xy]
解出:y' = -y[sin(xy) + 2xy] / x[sin(xy)+2xy] = -y/x
从而: dy = - y dx / x 或写成:
x dy = - y dx
其它题略(见谅)
2.y=tan [ln(1+x²)] y'=sec²[ln(1+x²)] [2x/(1+x²)] = 2xsec²[ln(1+x²)]/(1+x²)
3.y=x^(x^2) lny =x^2 lnx d(lny)/dx = y'/y = 2xlnx+x y'=x(2lnx + 1)x^(x^2) = (2lnx + 1)x^(x²+1)
4. cos(xy) = x² y² 求y的dy:
-sin(xy) (y+xy') = 2xy²+x² (2yy') -ysin(xy)-xy'sin(xy) = 2xy² + 2x²yy'
y'[xsin(xy)+2x²y] = -y[sin(xy) + 2xy]
解出:y' = -y[sin(xy) + 2xy] / x[sin(xy)+2xy] = -y/x
从而: dy = - y dx / x 或写成:
x dy = - y dx
其它题略(见谅)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询