数学,数列递推!
3个回答
展开全部
(n+1)a^2(n+1) -na^2n +a(n+1)an=0
na^2(n+1) -na^2n +a^2(n+1)+a(n+1)an=0
n[a^2(n+1) -a^2n] +a(n+1)[a(n+1)+an]=0
n[a(n+1) +an][a(n+1) -an] +a(n+1)[a(n+1)+an]=0
n[a(n+1) -an] +a(n+1)=0
na(n+1) - nan +a(n+1)=0
(n+1)a(n+1) =nan
a(n+1)/an =n/(n+1)
则有a(n)/a(n-1) =(n-1)/n
a(n-1)/a(n-2) =(n-2)/(n-1)
....
a2/a1=1/2
两边分别相乘得:
an/a1 =1/n
因为a1=1
所以an=1/n
na^2(n+1) -na^2n +a^2(n+1)+a(n+1)an=0
n[a^2(n+1) -a^2n] +a(n+1)[a(n+1)+an]=0
n[a(n+1) +an][a(n+1) -an] +a(n+1)[a(n+1)+an]=0
n[a(n+1) -an] +a(n+1)=0
na(n+1) - nan +a(n+1)=0
(n+1)a(n+1) =nan
a(n+1)/an =n/(n+1)
则有a(n)/a(n-1) =(n-1)/n
a(n-1)/a(n-2) =(n-2)/(n-1)
....
a2/a1=1/2
两边分别相乘得:
an/a1 =1/n
因为a1=1
所以an=1/n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询