在△ABC中,a、b、c分别为角A、B、C的对边,且(a2+b2)sin(A-B)=(a2-b2)sinC,试判断△ABC的形状
在△ABC中,a、b、c分别为角A、B、C的对边,且(a2+b2)sin(A-B)=(a2-b2)sinC,试判断△ABC的形状....
在△ABC中,a、b、c分别为角A、B、C的对边,且(a2+b2)sin(A-B)=(a2-b2)sinC,试判断△ABC的形状.
展开
展开全部
因为(a2+b2)sin(A-B)=(a2-b2)sinC,
所以(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),
所以sinAcosB(a2+b2-a2+b2)=cosAsinB(a2-b2+a2+b2).
所以sinAcosB(
)2=cosAsinB(
)2.
sinAcosB(sinBcosB-sinAcosA)=0.
sin2A=
sin2B,
A=B或2A+2B=180°,
所以三角形是等腰三角形或直角三角形.
所以(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),
所以sinAcosB(a2+b2-a2+b2)=cosAsinB(a2-b2+a2+b2).
所以sinAcosB(
sinB |
2R |
sinA |
2R |
sinAcosB(sinBcosB-sinAcosA)=0.
1 |
2 |
1 |
2 |
A=B或2A+2B=180°,
所以三角形是等腰三角形或直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询