已知如图:△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与

已知如图:△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点... 已知如图:△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,则FC(AC+EC)=______. 展开
 我来答
许子瑜V5GDW
2014-11-21 · 超过64用户采纳过TA的回答
知道答主
回答量:116
采纳率:66%
帮助的人:56.7万
展开全部
解:∵∠ODA=∠OAD=45°,
∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)2
得:
a(3?1)2=m
a(0?1)2=m?3

解得:
a=1
m=4

∴抛物线的解析式为y=x2-2x+1;
过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N,
设点Q的坐标是(x,x2-2x+1),
则QM=CN=(x-1)2,MC=QN=3-x.
∵QM∥CE,
∴△PQM∽△PEC,
QM
EC
PM
PC

(x?1)2
EC
x?1
2

∴EC=2(x-1).
∵QN∥FC,
∴△BQN∽△BFC,
QN
FC
BN
BC

3?x
FC
4?(x?1)2
4

FC=
4
x+1

∵AC=4,
∴FC(AC+EC)=
4
x+1
[4+2(x-1)]=
4
x+1
(2x+2)=
4
x+1
×2×(x+1)=8.
故答案为:8.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式