设各项为正的数列{an}的前n项和为Sn,且满足:2Sn=an?(an+1);数列{bn}满足:bn-bn-1=an-1(n≥2,n∈N
设各项为正的数列{an}的前n项和为Sn,且满足:2Sn=an?(an+1);数列{bn}满足:bn-bn-1=an-1(n≥2,n∈N*),且b1=1.(1)求an和b...
设各项为正的数列{an}的前n项和为Sn,且满足:2Sn=an?(an+1);数列{bn}满足:bn-bn-1=an-1(n≥2,n∈N*),且b1=1.(1)求an和bn;(2)设Tn为数列{1bn+2n}的前n项和,若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值.
展开
西窗月照903
2014-12-29
·
超过63用户采纳过TA的回答
知道答主
回答量:129
采纳率:100%
帮助的人:60.3万
关注
(1)n=1时,2S
1=a
1?(a
1+1),∴a
1=1
∵2S
n=a
n?(a
n+1),
∴n≥2时,2S
n-1=a
n-1?(a
n-1+1),
两式相减,整理得(a
n+a
n-1)(a
n-a
n-1-1)=0,
∵a
n>0,∴a
n-a
n-1=1,
∴数列{a
n}是以a
1=1为首项,1为公差的等差数列,
∴a
n=n;
∵b
n-b
n-1=a
n-1(n≥2,n∈N
*),
∴b
n=(b
n-b
n-1)+(b
n-1-b
n-2)+…+(b
2-b
1)+b
1=
+1=
n=1时也成立,
∴b
n=
;
(2)
=
=2(
-
),
∴T
n=2(
-
+
-
+…+
-
)=
,
∵T
n≤λa
n+1对一切n∈N
*恒成立,
∴
≤λ(n+1)对一切n∈N
*恒成立,
∴λ≥
.
∵
=
≤
=
(n=1或2),
∴λ≥
,
∴实数λ的最小值为
.
收起
为你推荐: