已知函数f(x)=是定义在区间[-1,1]上,恒有f(-x)=-f(x),且f(1)=1

已知函数f(x)=是定义在区间[-1,1]上,恒有f(-x)=-f(x),且f(1)=1,当m,n属于[-1,1],m+n≠0时,都有f(m)+f(n)/m+n>0判断f... 已知函数f(x)=是定义在区间[-1,1]上,恒有f(-x)=-f(x),且f(1)=1,当m,n属于[-1,1],m+n≠0时,都有f(m)+f(n)/m+n>0
判断f(x)单调性 并证明
展开
森森的森森
2010-08-31 · TA获得超过562个赞
知道小有建树答主
回答量:160
采纳率:0%
帮助的人:261万
展开全部
单调递增 设x>0 则m>m-x
若m-x在区间[-1,1]上 则x-m也在区间[-1,1]上 且f(m-x)=-f(x-m)
所以
f(m)-f(m-x)=f(m)+f(x-m)
因为f(m)+f(x-m)/(m+x-m)>0即f(m)+f(x-m)/(x)>0
因为x>0所以f(m)+f(x-m)>0
即f(m)-f(m-x)=f(m)+f(x-m)>0
且m>m-x 所以函数单调递增
希望解释的清楚~
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式