ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB. (Ⅰ)求B; (Ⅱ
ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值主要是后面的题的最大值问题...
ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值
主要是后面的题的最大值问题 展开
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值
主要是后面的题的最大值问题 展开
2个回答
展开全部
(1)
利用正弦定理:a/sinA=b/sinB=c/sinC
∵ a=bcosC+csinB
∴ sinA=sinBcosC+sinCsinB
∵ sinA=sin[π-(B+C)]=sin(B+C)
∴ sinBcosC+cosCsinB=sinBcosC+sinCsinB
∴ cosCsinB=sinCsinB
∴ tanB=1
∴ B=π/4
(2)
S=(1/2)acsinB=(√2/4)ac
利用余弦定理
4=a²+c²-2ac*cos(π/4)
∴ 4=a²+c²-√2ac≥2ac-√2ac
∴ ac≤4/(2+√2)=2(2+√2)
当且仅当a=c时等号成立
∴ S的最大值是(√2/4)*2*(2+√2)=√2+1
利用正弦定理:a/sinA=b/sinB=c/sinC
∵ a=bcosC+csinB
∴ sinA=sinBcosC+sinCsinB
∵ sinA=sin[π-(B+C)]=sin(B+C)
∴ sinBcosC+cosCsinB=sinBcosC+sinCsinB
∴ cosCsinB=sinCsinB
∴ tanB=1
∴ B=π/4
(2)
S=(1/2)acsinB=(√2/4)ac
利用余弦定理
4=a²+c²-2ac*cos(π/4)
∴ 4=a²+c²-√2ac≥2ac-√2ac
∴ ac≤4/(2+√2)=2(2+√2)
当且仅当a=c时等号成立
∴ S的最大值是(√2/4)*2*(2+√2)=√2+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询