高等数学,关于多元函数微分的一个问题 如图,此题为何可以先将y=0代入再对x求导?
4个回答
展开全部
先将y=0代入再此凯对x求导的原因是因为y=a^x(a>0 ,a≠1),定义域为( -∞,+∞),枝历值域为(0 ,+∞),a>0 时是严格单调增加的函数( 即当x2>x1时,y2>y1) ,0<a<1 时是严格单减函数。
对任何a,图像均森搭唤过点(0,1),注意y=a^x和y=log(x)的图形关于y轴对称。以10为底的对数称为常用对数 ,简记为lgx 。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作lnx。
情况分析
但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。例如,某种商品的市场需求量不仅仅与其市场价格有关。
与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。
2015-06-14 · 知道合伙人教育行家
关注
展开全部
偏导数的族告定义
fx(x0,y0)
=lim(△x→0)[f(x0+△x,兆吵明y0)-f(x0,y0)]/△x
观察分子,可以看到,y的值始碰雹终保持y0不变,
所以,完全可以首先代入y=y0,
然后对x求导。
fx(x0,y0)
=lim(△x→0)[f(x0+△x,兆吵明y0)-f(x0,y0)]/△x
观察分子,可以看到,y的值始碰雹终保持y0不变,
所以,完全可以首先代入y=y0,
然后对x求导。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为是z对x求偏导,可以把y看作一个常数
如y对x求导,不可把y先代入
如y对x求导,不可把y先代入
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高等数学 百科名片
高等数学比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。
目录
高等数学的特点 如何学好高等数学 具体内容 一、 函数与极限 二、导数与微分 三、导数的应用 四、不定积分 五、定积分及其应用 六、空间解析几何 七、多元函数的微分学 八、多元函数积分学 九、常微分方程 十、无穷级数导数的概念高等数学的特点 如何学好高等数学 具体内容 一、 函数与极限 二、导数与微分 三、导数的应用 四、不定积分 五、定积分及其应用 六、空间解析几何 七、多元函数的微分学 八、多元函数积分学 九、常微分方程 十、无穷级数导数的概念展开编辑本段高等数学的特点 初等数学研究的是常量与匀变量,高等数学研究的是不匀变量。
高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科。 作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述薯前,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。 编辑本段如何学好高等数学 平心而论,高等数学确实是一门比较难的课程。极限的运算、无穷小量、一元微积分学、多元微积分学、无穷级数等章节都有比较大的难度。 很多学生对“怎样才能学好这门课程?”感到困惑。要想学好高等数学,要做到以下几点: 首先,理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。 其次,掌握定理。定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。 第三,在弄懂例题的基础上作适量的习题。要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才帆手液会有所收获,才能举一反三。 第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。 高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的创建工作,是由牛顿和莱布尼茨完成的[只是他们创建的微积分的理论基础不够严谨]。(当然在他们之前就已有微积分的应用,但不够系统) 高等数学有两个特点:1.等价代换。在极限类的计算里,常等价代换一些因子(这在量的计算中是不可理解的),但极限是阶的计算。2.如果原函数形式使计算很困难,可使用原函数的积分或微分形式,这是化简计算的思想。这三个函数之间的关系就是微分方程。 编辑本段具体内容一、 函数与极限 常量与变量 函数 函数的简单性态 反函数 初等函数 数列的极限 函数的极限 无穷大量与无穷小量 无穷小量的比较 函数连续性 连续函数的性质及初等函数函数连续性 二、导数与微分 导数的概念 函数的和、差求导法则 函数的积、商求导法则 复态物合函数求导法则 反函数求导法则 高阶导数 隐函数及其求导法则 函数的微分 三、导数的应用 微分中值定理 未定式问题 函数单调性的判定法 函数的极值及其求法 函数的最大、最小值及其应用 曲线的凹向与拐点 四、不定积分 不定积分的概念及性质 求不定积分的方法 几种特殊函数的积分举例 五、定积分及其应用 定积分的概念 微积分的积分公式 定积分的换元法与分部积分法 广义积分 六、空间解析几何 空间直角坐标系 方向余弦与方向数 平面与空间直线 曲面与空间曲线 七、多元函数的微分学 多元函数概念 二元函数极限及其连续性 偏导数 全微分 多元复合函数的求导法 多元函数的极值 八、多
高等数学比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。
目录
高等数学的特点 如何学好高等数学 具体内容 一、 函数与极限 二、导数与微分 三、导数的应用 四、不定积分 五、定积分及其应用 六、空间解析几何 七、多元函数的微分学 八、多元函数积分学 九、常微分方程 十、无穷级数导数的概念高等数学的特点 如何学好高等数学 具体内容 一、 函数与极限 二、导数与微分 三、导数的应用 四、不定积分 五、定积分及其应用 六、空间解析几何 七、多元函数的微分学 八、多元函数积分学 九、常微分方程 十、无穷级数导数的概念展开编辑本段高等数学的特点 初等数学研究的是常量与匀变量,高等数学研究的是不匀变量。
高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科。 作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述薯前,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。 编辑本段如何学好高等数学 平心而论,高等数学确实是一门比较难的课程。极限的运算、无穷小量、一元微积分学、多元微积分学、无穷级数等章节都有比较大的难度。 很多学生对“怎样才能学好这门课程?”感到困惑。要想学好高等数学,要做到以下几点: 首先,理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。 其次,掌握定理。定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。 第三,在弄懂例题的基础上作适量的习题。要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才帆手液会有所收获,才能举一反三。 第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。 高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的创建工作,是由牛顿和莱布尼茨完成的[只是他们创建的微积分的理论基础不够严谨]。(当然在他们之前就已有微积分的应用,但不够系统) 高等数学有两个特点:1.等价代换。在极限类的计算里,常等价代换一些因子(这在量的计算中是不可理解的),但极限是阶的计算。2.如果原函数形式使计算很困难,可使用原函数的积分或微分形式,这是化简计算的思想。这三个函数之间的关系就是微分方程。 编辑本段具体内容一、 函数与极限 常量与变量 函数 函数的简单性态 反函数 初等函数 数列的极限 函数的极限 无穷大量与无穷小量 无穷小量的比较 函数连续性 连续函数的性质及初等函数函数连续性 二、导数与微分 导数的概念 函数的和、差求导法则 函数的积、商求导法则 复态物合函数求导法则 反函数求导法则 高阶导数 隐函数及其求导法则 函数的微分 三、导数的应用 微分中值定理 未定式问题 函数单调性的判定法 函数的极值及其求法 函数的最大、最小值及其应用 曲线的凹向与拐点 四、不定积分 不定积分的概念及性质 求不定积分的方法 几种特殊函数的积分举例 五、定积分及其应用 定积分的概念 微积分的积分公式 定积分的换元法与分部积分法 广义积分 六、空间解析几何 空间直角坐标系 方向余弦与方向数 平面与空间直线 曲面与空间曲线 七、多元函数的微分学 多元函数概念 二元函数极限及其连续性 偏导数 全微分 多元复合函数的求导法 多元函数的极值 八、多
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询