关于一道数列不等式问题

已知an=n。求证:1/a1^2+1/a2^2+1/a3^2+…+1/an^2<7/4…待会就交了…求助…... 已知an=n。求证:1/a1^2+1/a2^2+1/a3^2+…+1/an^2 < 7/4…待会就交了…求助… 展开
 我来答 举报
sir_chen
2010-08-31 · TA获得超过5589个赞
知道大有可为答主
回答量:1012
采纳率:0%
帮助的人:717万
展开全部
这道题方法很多,可以用放缩法,也可用数学归纳法,我在空间中贴过解法,这里就直接摘下来了。注意,我证明的是小于5/3<7/4

证明:1+1/2²+1/3²+...+1/n²<5/3

分析:前一篇文章已经介绍了1+1/2²+1/3²+...+1/n²的极限是π²/6=1.6449.......,因此只要不等式右边的值比这个值大就可以用数学归纳法证明.但是这个不等式右边为常数,当用到归纳假设时右边变成了5/3+1/(k+1)²,这个值已经比5/3大,归纳受阻;因此对于不等式一边为常数型的命题不能用常规的归纳法,需要把原问题加强,也就是引入一个比右边更小的且含有n的函数的量.

现考虑f(n)>0,并且在归纳n=k+1时有:5/3-f(k)+1/(k+1)²<5/3-f(k+1)<==>f(k)-f(k+1)>1/(k+1)²

考虑到1/(k+1)²<1/(k*(k+1))=1/k-1/(k+1),因此可以取f(k)=1/k

原命题就可以转化为:证明1+1/2²+1/3²+...+1/n²<5/3-1/n(n≥m)

在转换命题时有个技巧:起点后移,也就是说n的起点不能从1开始,而是从某个特定值m开始,对于小于m的部分不用转换,只需将n的值逐一验证即可.通过检测,此题中m=5,所以对于n=1,2,3,4只需直接代入计算,只要小于5/3即可,对于n≥5就可以用归纳法先证明1+1/2²+1/3²+...+1/n²<5/3-1/n,然后根据5/3-1/n<5/3即可得到证明.

参考资料: http://hi.baidu.com/sir_chen/ihome/myblog

抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
zhourgys
2010-09-05 · TA获得超过4637个赞
知道大有可为答主
回答量:1560
采纳率:71%
帮助的人:932万
展开全部
本题对于高中生来说最佳是用放缩法,也需要一定的尝试:

证明:因为当n是大于1的正整数时1/n^2<1/n(n-1)=1/(n-1)-1/n
所以1/a1^2+1/a2^2+1/a3^2+…+1/an^2
=1+1/2²+1/3²+...+1/n²
=1+1/4+1/2-1/3 =+1/3-1/4+1/4-1/5+......+1/(n-1)-1/n
=7/4-1/n
<7/4
所以原不等式得证
本回答被提问者采纳
3 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式